Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2015 University of Basel, Graphics and Vision Research Group
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package scalismo.mesh
import scalismo.common.BoxDomain
import scalismo.geometry.{_3D, Point}
import scalismo.numerics.UniformSampler
import scalismo.registration.LandmarkRegistration
import scalismo.utils.Random
/**
* Implements utility methods for evaluating similarity of [[TriangleMesh]] instances
*
*/
object MeshMetrics {
/**
* For each point of the first mesh, this method computes the shortest distance to the surface of the
* second mesh and returns the average over all points
*/
def avgDistance(m1: TriangleMesh[_3D], m2: TriangleMesh[_3D]): Double = {
val dists = for (ptM1 <- m1.pointSet.points) yield {
val cpM2 = m2.operations.closestPointOnSurface(ptM1).point
(ptM1 - cpM2).norm
}
dists.sum / m1.pointSet.numberOfPoints
}
/**
* Partial Procrustes distance - returns the average mesh correspondence point distance after performing a rigid alignment
* between the two meshes. Note that no scale transformation is applied in the shape alignment.
* All mesh points are used for the rigid alignment, therefore both meshes must be in correspondence
*/
def procrustesDistance(m1: TriangleMesh[_3D], m2: TriangleMesh[_3D]): Double = {
require(m1.pointSet.numberOfPoints == m2.pointSet.numberOfPoints)
val landmarks = m1.pointSet.points.toIndexedSeq zip m2.pointSet.points.toIndexedSeq
val t = LandmarkRegistration.rigid3DLandmarkRegistration(landmarks, Point(0, 0, 0))
val m1w = m1.transform(t)
val dists = (m1w.pointSet.points.toIndexedSeq zip m2.pointSet.points.toIndexedSeq).map {
case (m1wP, m2P) => (m1wP - m2P).norm
}
dists.sum / m1.pointSet.numberOfPoints
}
/**
* Returns the average tetrahderal mesh distance after performing a rigid alignment between the two tetrahedral meshes.
* All tetrahedral mesh points are used for the rigid alignment, therefore both tetrahedral meshes must be in correspondence
*/
def procrustesDistance(m1: TetrahedralMesh[_3D], m2: TetrahedralMesh[_3D]): Double = {
require(m1.pointSet.numberOfPoints == m2.pointSet.numberOfPoints)
val landmarks = m1.pointSet.points.toIndexedSeq zip m2.pointSet.points.toIndexedSeq
val t = LandmarkRegistration.rigid3DLandmarkRegistration(landmarks, Point(0, 0, 0))
val m1w = m1.transform(t)
val dists = (m1w.pointSet.points.toIndexedSeq zip m2.pointSet.points.toIndexedSeq).map {
case (m1wP, m2P) => (m1wP - m2P).norm
}
dists.sum / m1.pointSet.numberOfPoints
}
/**
* Returns the Hausdorff distance between the two meshes
*/
def hausdorffDistance(m1: TriangleMesh[_3D], m2: TriangleMesh[_3D]): Double = {
def allDistsBetweenMeshes(mm1: TriangleMesh[_3D], mm2: TriangleMesh[_3D]): Iterator[Double] = {
for (ptM1 <- mm1.pointSet.points) yield {
val cpM2 = mm2.operations.closestPointOnSurface(ptM1).point
(ptM1 - cpM2).norm
}
}
val d1 = allDistsBetweenMeshes(m1, m2)
val d2 = allDistsBetweenMeshes(m2, m1)
Math.max(d1.max, d2.max)
}
/**
* Computes a binary image for each mesh and returns the Dice Coefficient between the two images
*/
def diceCoefficient(m1: TriangleMesh[_3D], m2: TriangleMesh[_3D])(implicit rand: Random): Double = {
val imgA = m1.operations.toBinaryImage
val imgB = m2.operations.toBinaryImage
def minPoint(pt1: Point[_3D], pt2: Point[_3D]) =
Point(math.min(pt1(0), pt2(0)), math.min(pt1(1), pt2(1)), math.min(pt1(2), pt2(2)))
def maxPoint(pt1: Point[_3D], pt2: Point[_3D]) =
Point(math.max(pt1(0), pt2(0)), math.max(pt1(1), pt2(1)), math.max(pt1(2), pt2(2)))
val box1 = m1.pointSet.boundingBox
val box2 = m2.pointSet.boundingBox
val evaluationRegion =
BoxDomain(minPoint(box1.origin, box2.origin), maxPoint(box1.oppositeCorner, box2.oppositeCorner))
val sampler = UniformSampler[_3D](evaluationRegion, 10000)
val samplePts = sampler.sample().map(_._1)
val samplesInA = samplePts.map(imgA)
val samplesInB = samplePts.map(imgB)
val numSamplesInAIB = samplesInA.zip(samplesInB).count { case (inA, inB) => inA > 0 && inB > 0 }
2.0 * numSamplesInAIB / (samplesInA.sum + samplesInB.sum)
}
}