All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jgrapht.alg.clustering.KSpanningTreeClustering Maven / Gradle / Ivy

/*
 * (C) Copyright 2019-2021, by Dimitrios Michail and Contributors.
 *
 * JGraphT : a free Java graph-theory library
 *
 * See the CONTRIBUTORS.md file distributed with this work for additional
 * information regarding copyright ownership.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License 2.0 which is available at
 * http://www.eclipse.org/legal/epl-2.0, or the
 * GNU Lesser General Public License v2.1 or later
 * which is available at
 * http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html.
 *
 * SPDX-License-Identifier: EPL-2.0 OR LGPL-2.1-or-later
 */
package org.jgrapht.alg.clustering;

import org.jgrapht.*;
import org.jgrapht.alg.interfaces.*;
import org.jgrapht.alg.interfaces.SpanningTreeAlgorithm.*;
import org.jgrapht.alg.spanning.*;
import org.jgrapht.alg.util.*;

import java.util.*;

/**
 * The k spanning tree clustering algorithm.
 * 
 * 

* The algorithm finds a minimum spanning tree $T$ using Prim's algorithm, then executes Kruskal's * algorithm only on the edges of $T$ until $k$ trees are formed. The resulting trees are the final * clusters. The total running time is $O(m + n \log n)$. * *

* The algorithm is strongly related to single linkage cluster analysis, also known as single-link * clustering. For more information see: J. C. Gower and G. J. S. Ross. Minimum Spanning Trees and * Single Linkage Cluster Analysis. Journal of the Royal Statistical Society. Series C (Applied * Statistics), 18(1):54--64, 1969. * * @author Dimitrios Michail * * @param the graph vertex type * @param the graph edge type */ public class KSpanningTreeClustering implements ClusteringAlgorithm { private Graph graph; private int k; /** * Create a new clustering algorithm. * * @param graph the graph (needs to be undirected) * @param k the desired number of clusters */ public KSpanningTreeClustering(Graph graph, int k) { this.graph = GraphTests.requireUndirected(graph); if (k < 1 || k > graph.vertexSet().size()) { throw new IllegalArgumentException("Illegal number of clusters"); } this.k = k; } @Override public Clustering getClustering() { /* * Compute an MST */ SpanningTree mst = new PrimMinimumSpanningTree<>(graph).getSpanningTree(); /* * Run Kruskal only on MST edges until we get k clusters */ UnionFind forest = new UnionFind<>(graph.vertexSet()); ArrayList allEdges = new ArrayList<>(mst.getEdges()); allEdges.sort(Comparator.comparingDouble(graph::getEdgeWeight)); for (E edge : allEdges) { if (forest.numberOfSets() == k) { break; } V source = graph.getEdgeSource(edge); V target = graph.getEdgeTarget(edge); if (forest.find(source).equals(forest.find(target))) { continue; } forest.union(source, target); } /* * Transform and return result */ Map> clusterMap = new LinkedHashMap<>(); for (V v : graph.vertexSet()) { V rv = forest.find(v); Set cluster = clusterMap.get(rv); if (cluster == null) { cluster = new LinkedHashSet<>(); clusterMap.put(rv, cluster); } cluster.add(v); } return new ClusteringImpl<>(new ArrayList<>(clusterMap.values())); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy