org.jgrapht.alg.cycle.TiernanSimpleCycles Maven / Gradle / Ivy
/*
* (C) Copyright 2013-2021, by Nikolay Ognyanov and Contributors.
*
* JGraphT : a free Java graph-theory library
*
* See the CONTRIBUTORS.md file distributed with this work for additional
* information regarding copyright ownership.
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0, or the
* GNU Lesser General Public License v2.1 or later
* which is available at
* http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html.
*
* SPDX-License-Identifier: EPL-2.0 OR LGPL-2.1-or-later
*/
package org.jgrapht.alg.cycle;
import org.jgrapht.*;
import java.util.*;
/**
* Find all simple cycles of a directed graph using the Tiernan's algorithm.
*
*
* See:
* J.C.Tiernan An Efficient Search Algorithm Find the Elementary Circuits of a Graph.,
* Communications of the ACM, vol.13, 12, (1970), pp. 722 - 726.
*
* @param the vertex type.
* @param the edge type.
*
* @author Nikolay Ognyanov
*/
public class TiernanSimpleCycles
implements
DirectedSimpleCycles
{
private Graph graph;
/**
* Create a simple cycle finder with an unspecified graph.
*/
public TiernanSimpleCycles()
{
}
/**
* Create a simple cycle finder for the specified graph.
*
* @param graph - the DirectedGraph in which to find cycles.
*
* @throws IllegalArgumentException if the graph argument is
* null
.
*/
public TiernanSimpleCycles(Graph graph)
{
this.graph = GraphTests.requireDirected(graph, "Graph must be directed");
}
/**
* Get the graph
*
* @return graph
*/
public Graph getGraph()
{
return graph;
}
/**
* Set the graph
*
* @param graph graph
*/
public void setGraph(Graph graph)
{
this.graph = GraphTests.requireDirected(graph, "Graph must be directed");
}
/**
* {@inheritDoc}
*/
@Override
public List> findSimpleCycles()
{
if (graph == null) {
throw new IllegalArgumentException("Null graph.");
}
Map indices = new HashMap<>();
List path = new ArrayList<>();
Set pathSet = new HashSet<>();
Map> blocked = new HashMap<>();
List> cycles = new LinkedList<>();
int index = 0;
for (V v : graph.vertexSet()) {
blocked.put(v, new HashSet<>());
indices.put(v, index++);
}
Iterator vertexIterator = graph.vertexSet().iterator();
if (!vertexIterator.hasNext()) {
return cycles;
}
V startOfPath;
V endOfPath;
V temp;
int endIndex;
boolean extensionFound;
endOfPath = vertexIterator.next();
path.add(endOfPath);
pathSet.add(endOfPath);
// A mostly straightforward implementation
// of the algorithm. Except that there is
// no real need for the state machine from
// the original paper.
while (true) {
// path extension
do {
extensionFound = false;
for (E e : graph.outgoingEdgesOf(endOfPath)) {
V n = graph.getEdgeTarget(e);
int cmp = indices.get(n).compareTo(indices.get(path.get(0)));
if ((cmp > 0) && !pathSet.contains(n) && !blocked.get(endOfPath).contains(n)) {
path.add(n);
pathSet.add(n);
endOfPath = n;
extensionFound = true;
break;
}
}
} while (extensionFound);
// circuit confirmation
startOfPath = path.get(0);
if (graph.containsEdge(endOfPath, startOfPath)) {
List cycle = new ArrayList<>(path);
cycles.add(cycle);
}
// vertex closure
if (path.size() > 1) {
blocked.get(endOfPath).clear();
endIndex = path.size() - 1;
path.remove(endIndex);
pathSet.remove(endOfPath);
--endIndex;
temp = endOfPath;
endOfPath = path.get(endIndex);
blocked.get(endOfPath).add(temp);
continue;
}
// advance initial index
if (vertexIterator.hasNext()) {
path.clear();
pathSet.clear();
endOfPath = vertexIterator.next();
path.add(endOfPath);
pathSet.add(endOfPath);
for (V vt : blocked.keySet()) {
blocked.get(vt).clear();
}
continue;
}
// terminate
break;
}
return cycles;
}
}