All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jgrapht.alg.cycle.TiernanSimpleCycles Maven / Gradle / Ivy

/*
 * (C) Copyright 2013-2021, by Nikolay Ognyanov and Contributors.
 *
 * JGraphT : a free Java graph-theory library
 *
 * See the CONTRIBUTORS.md file distributed with this work for additional
 * information regarding copyright ownership.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License 2.0 which is available at
 * http://www.eclipse.org/legal/epl-2.0, or the
 * GNU Lesser General Public License v2.1 or later
 * which is available at
 * http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html.
 *
 * SPDX-License-Identifier: EPL-2.0 OR LGPL-2.1-or-later
 */
package org.jgrapht.alg.cycle;

import org.jgrapht.*;

import java.util.*;

/**
 * Find all simple cycles of a directed graph using the Tiernan's algorithm.
 *
 * 

* See:
* J.C.Tiernan An Efficient Search Algorithm Find the Elementary Circuits of a Graph., * Communications of the ACM, vol.13, 12, (1970), pp. 722 - 726. * * @param the vertex type. * @param the edge type. * * @author Nikolay Ognyanov */ public class TiernanSimpleCycles implements DirectedSimpleCycles { private Graph graph; /** * Create a simple cycle finder with an unspecified graph. */ public TiernanSimpleCycles() { } /** * Create a simple cycle finder for the specified graph. * * @param graph - the DirectedGraph in which to find cycles. * * @throws IllegalArgumentException if the graph argument is * null. */ public TiernanSimpleCycles(Graph graph) { this.graph = GraphTests.requireDirected(graph, "Graph must be directed"); } /** * Get the graph * * @return graph */ public Graph getGraph() { return graph; } /** * Set the graph * * @param graph graph */ public void setGraph(Graph graph) { this.graph = GraphTests.requireDirected(graph, "Graph must be directed"); } /** * {@inheritDoc} */ @Override public List> findSimpleCycles() { if (graph == null) { throw new IllegalArgumentException("Null graph."); } Map indices = new HashMap<>(); List path = new ArrayList<>(); Set pathSet = new HashSet<>(); Map> blocked = new HashMap<>(); List> cycles = new LinkedList<>(); int index = 0; for (V v : graph.vertexSet()) { blocked.put(v, new HashSet<>()); indices.put(v, index++); } Iterator vertexIterator = graph.vertexSet().iterator(); if (!vertexIterator.hasNext()) { return cycles; } V startOfPath; V endOfPath; V temp; int endIndex; boolean extensionFound; endOfPath = vertexIterator.next(); path.add(endOfPath); pathSet.add(endOfPath); // A mostly straightforward implementation // of the algorithm. Except that there is // no real need for the state machine from // the original paper. while (true) { // path extension do { extensionFound = false; for (E e : graph.outgoingEdgesOf(endOfPath)) { V n = graph.getEdgeTarget(e); int cmp = indices.get(n).compareTo(indices.get(path.get(0))); if ((cmp > 0) && !pathSet.contains(n) && !blocked.get(endOfPath).contains(n)) { path.add(n); pathSet.add(n); endOfPath = n; extensionFound = true; break; } } } while (extensionFound); // circuit confirmation startOfPath = path.get(0); if (graph.containsEdge(endOfPath, startOfPath)) { List cycle = new ArrayList<>(path); cycles.add(cycle); } // vertex closure if (path.size() > 1) { blocked.get(endOfPath).clear(); endIndex = path.size() - 1; path.remove(endIndex); pathSet.remove(endOfPath); --endIndex; temp = endOfPath; endOfPath = path.get(endIndex); blocked.get(endOfPath).add(temp); continue; } // advance initial index if (vertexIterator.hasNext()) { path.clear(); pathSet.clear(); endOfPath = vertexIterator.next(); path.add(endOfPath); pathSet.add(endOfPath); for (V vt : blocked.keySet()) { blocked.get(vt).clear(); } continue; } // terminate break; } return cycles; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy