All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jgrapht.alg.tour.HeldKarpTSP Maven / Gradle / Ivy

/*
 * (C) Copyright 2017-2021, by Alexandru Valeanu and Contributors.
 *
 * JGraphT : a free Java graph-theory library
 *
 * See the CONTRIBUTORS.md file distributed with this work for additional
 * information regarding copyright ownership.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License 2.0 which is available at
 * http://www.eclipse.org/legal/epl-2.0, or the
 * GNU Lesser General Public License v2.1 or later
 * which is available at
 * http://www.gnu.org/licenses/old-licenses/lgpl-2.1-standalone.html.
 *
 * SPDX-License-Identifier: EPL-2.0 OR LGPL-2.1-or-later
 */
package org.jgrapht.alg.tour;

import org.jgrapht.*;
import org.jgrapht.util.*;

import java.util.*;

/**
 * A dynamic programming algorithm for the TSP problem.
 *
 * 

* The travelling salesman problem (TSP) asks the following question: "Given a list of cities and * the distances between each pair of cities, what is the shortest possible route that visits each * city exactly once and returns to the origin city?". * *

* This is an implementation of the Held-Karp algorithm which returns a optimal, minimum-cost * Hamiltonian tour. The implementation requires the input graph to contain at least one vertex. The * running time is $O(2^{|V|} \times |V|^2)$ and it takes $O(2^{|V|} \times |V|)$ extra memory. * *

* See wikipedia for more * details about TSP. * *

* See wikipedia for more * details about the dynamic programming algorithm. * * @param the graph vertex type * @param the graph edge type * * @author Alexandru Valeanu */ public class HeldKarpTSP extends HamiltonianCycleAlgorithmBase { private double memo(int previousNode, int state, double[][] c, double[][] w) { // have we seen this state before? if (c[previousNode][state] != Double.MIN_VALUE) { return c[previousNode][state]; } // no cycle has been found yet double totalCost = Double.MAX_VALUE; // check if all nodes have been visited (i.e. state + 1 == 2^n) if (state == (1 << w.length) - 1) { // check if there is a return edge we can use if (w[previousNode][0] != Double.MAX_VALUE) { totalCost = w[previousNode][0]; } } else { // try to find the 'best' next (i.e. unvisited and adjacent to previousNode) node in the // tour for (int i = 0; i < w.length; i++) { if (((state >> i) & 1) == 0 && w[previousNode][i] != Double.MAX_VALUE) { totalCost = Math.min(totalCost, w[previousNode][i] + memo(i, state ^ (1 << i), c, w)); } } } return c[previousNode][state] = totalCost; } /** * Computes a minimum-cost Hamiltonian tour. * * @param graph the input graph * @return a minimum-cost tour if one exists, null otherwise * @throws IllegalArgumentException if the graph contains no vertices * @throws IllegalArgumentException if the graph contains more than 31 vertices */ @Override public GraphPath getTour(Graph graph) { requireNotEmpty(graph); final int n = graph.vertexSet().size(); // number of nodes if (n == 1) { return getSingletonTour(graph); } if (n > 31) { throw new IllegalArgumentException( "The internal representation of the dynamic programming state " + "space cannot represent graphs containing more than 31 vertices. " + "The runtime complexity of this implementation, O(2^|V| x |V|^2), makes it unsuitable " + "for graphs with more than 31 vertices."); } // Normalize the graph by mapping each vertex to an integer. VertexToIntegerMapping vertexToIntegerMapping = Graphs.getVertexToIntegerMapping(graph); // W[u, v] = the cost of the minimum weight between u and v double[][] w = computeMinimumWeights(vertexToIntegerMapping.getVertexMap(), graph); // C[prevNode, state] = the minimum cost of a tour that ends in prevNode and contains all // nodes in the bitmask state double[][] c = new double[n][1 << n]; fill(c, Double.MIN_VALUE); // start the tour from node 0 (because the tour is a cycle the start vertex does not matter) double tourWeight = memo(0, 1, c, w); // check if there is no tour if (tourWeight == Double.MAX_VALUE) { return null; } List vertexList = reconstructTour(vertexToIntegerMapping.getIndexList(), w, c); return vertexListToTour(vertexList, graph); } private double[][] computeMinimumWeights(Map vertexMap, Graph graph) { final int n = vertexMap.size(); double[][] w = new double[n][n]; fill(w, Double.MAX_VALUE); for (E e : graph.edgeSet()) { V source = graph.getEdgeSource(e); V target = graph.getEdgeTarget(e); int u = vertexMap.get(source); int v = vertexMap.get(target); // use Math.min in case we deal with a multigraph w[u][v] = Math.min(w[u][v], graph.getEdgeWeight(e)); // If the graph is undirected we need to also consider the reverse edge if (graph.getType().isUndirected()) { w[v][u] = Math.min(w[v][u], graph.getEdgeWeight(e)); } } return w; } private static void fill(double[][] array, double value) { for (double[] element : array) { Arrays.fill(element, value); } } private List reconstructTour(List indexList, double[][] w, double[][] c) { final int n = indexList.size(); List vertexList = new ArrayList<>(n); int lastNode = 0; int lastState = 1; vertexList.add(indexList.get(lastNode)); for (int step = 1; step < n; step++) { int nextNode = -1; for (int node = 1; node < n; node++) { if ((lastState & (1 << node)) == 0 && w[lastNode][node] != Double.MAX_VALUE && c[node][lastState ^ (1 << node)] != Double.MIN_VALUE && Double .compare( c[node][lastState ^ (1 << node)] + w[lastNode][node], c[lastNode][lastState]) == 0) { nextNode = node; break; } } assert nextNode != -1; vertexList.add(indexList.get(nextNode)); lastState ^= 1 << nextNode; lastNode = nextNode; } return vertexList; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy