com.actelion.research.calc.regression.linear.pls.SimPLSLMOValidation Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of openchemlib Show documentation
Show all versions of openchemlib Show documentation
Open Source Chemistry Library
/*
* Copyright (c) 1997 - 2016
* Actelion Pharmaceuticals Ltd.
* Gewerbestrasse 16
* CH-4123 Allschwil, Switzerland
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of the the copyright holder nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.actelion.research.calc.regression.linear.pls;
import com.actelion.research.calc.Matrix;
import com.actelion.research.calc.regression.ModelError;
import com.actelion.research.calc.statistics.median.MedianStatisticFunctions;
import com.actelion.research.calc.statistics.median.ModelMedianDouble;
import com.actelion.research.util.datamodel.ModelXY;
import com.actelion.research.util.datamodel.ModelXYCrossValidation;
import com.actelion.research.util.datamodel.ModelXYIndex;
import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.List;
/**
*
*
* SimPLSLMOValidation
* @author Modest von Korff
* @version 1.0
* Jul 26, 2011 MvK: Start implementation
*/
@Deprecated // Replaced by LMOCV for multiple regression techniques
public class SimPLSLMOValidation {
public static final DecimalFormat NF = new DecimalFormat("0.000");
private int nRepetitions;
private int nFactors;
private List liModelErrorTest;
private List liModelErrorTrain;
private boolean centerData;
private ModelXYCrossValidation modelXYCrossValidation;
public SimPLSLMOValidation(Matrix X, Matrix Y) {
modelXYCrossValidation = new ModelXYCrossValidation(new ModelXY(X, Y));
}
public void setFractionLeaveOut(double fracOut) {
modelXYCrossValidation.setFractionLeaveOut(fracOut);
}
public void setNumRepetitions(int nRepetitions) {
this.nRepetitions = nRepetitions;
}
public void setNumFactors(int nFactors) {
this.nFactors = nFactors;
}
public void setCenterData(boolean centerData) {
this.centerData = centerData;
}
/**
*
* @return median error of all repetitions.
*/
public double calculateMedianTestError() {
liModelErrorTest = new ArrayList();
liModelErrorTrain = new ArrayList();
PLSRegressionModelCalculator rmc = new PLSRegressionModelCalculator();
rmc.setCenterData(centerData);
for (int i = 0; i < nRepetitions; i++) {
modelXYCrossValidation.next();
ModelXYIndex modelXYIndex = new ModelXYIndex();
modelXYIndex.X = modelXYCrossValidation.getXtrain();
modelXYIndex.Y = modelXYCrossValidation.getYtrain();
Matrix yHat = rmc.createModel(modelXYIndex);
ModelError modelErrorTrain = ModelError.calculateError(modelXYIndex.Y, yHat);
ModelError modelErrorTest = rmc.calculateModelErrorTest(modelXYCrossValidation.getXtest(), modelXYCrossValidation.getYtest());
liModelErrorTrain.add(modelErrorTrain);
liModelErrorTest.add(modelErrorTest);
}
List liErrorTest = ModelError.getError(liModelErrorTest);
ModelMedianDouble modelMedian = MedianStatisticFunctions.getMedianForDouble(liErrorTest);
return modelMedian.median;
}
}