smile.sort.QuickSelect Maven / Gradle / Ivy
Show all versions of openchemlib Show documentation
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.sort;
/**
* Selection is asking for the k th smallest element out of n elements.
* This class implements the fastest general method for selection based on
* partitioning, exactly as done in the Quicksort algorithm.
*
* The most common use of selection is in the statistical characterization of
* a set of data. One often wants to know the median element (quantile p = 1/2)
* in an array or the top and bottom quartile elements (quantile p = 1/4, 3/4).
*
* @author Haifeng Li
*/
public class QuickSelect {
/** Utility classes should not have public constructors. */
private QuickSelect() {
}
/**
* Given k in [0, n-1], returns an array value from arr such that k array
* values are less than or equal to the one returned. The input array will
* be rearranged to have this value in location arr[k], with all smaller
* elements moved to arr[0, k-1] (in arbitrary order) and all larger elements
* in arr[k+1, n-1] (also in arbitrary order).
*/
public static int select(int[] arr, int k) {
int n = arr.length;
int l = 0;
int ir = n - 1;
int a;
int i, j, mid;
for (;;) {
if (ir <= l + 1) {
if (ir == l + 1 && arr[ir] < arr[l]) {
SortUtils.swap(arr, l, ir);
}
return arr[k];
} else {
mid = (l + ir) >> 1;
SortUtils.swap(arr, mid, l + 1);
if (arr[l] > arr[ir]) {
SortUtils.swap(arr, l, ir);
}
if (arr[l + 1] > arr[ir]) {
SortUtils.swap(arr, l + 1, ir);
}
if (arr[l] > arr[l + 1]) {
SortUtils.swap(arr, l, l + 1);
}
i = l + 1;
j = ir;
a = arr[l + 1];
for (;;) {
do {
i++;
} while (arr[i] < a);
do {
j--;
} while (arr[j] > a);
if (j < i) {
break;
}
SortUtils.swap(arr, i, j);
}
arr[l + 1] = arr[j];
arr[j] = a;
if (j >= k) {
ir = j - 1;
}
if (j <= k) {
l = i;
}
}
}
}
/**
* Given k in [0, n-1], returns an array value from arr such that k array
* values are less than or equal to the one returned. The input array will
* be rearranged to have this value in location arr[k], with all smaller
* elements moved to arr[0, k-1] (in arbitrary order) and all larger elements
* in arr[k+1, n-1] (also in arbitrary order).
*/
public static float select(float[] arr, int k) {
int n = arr.length;
int l = 0;
int ir = n - 1;
float a;
int i, j, mid;
for (;;) {
if (ir <= l + 1) {
if (ir == l + 1 && arr[ir] < arr[l]) {
SortUtils.swap(arr, l, ir);
}
return arr[k];
} else {
mid = (l + ir) >> 1;
SortUtils.swap(arr, mid, l + 1);
if (arr[l] > arr[ir]) {
SortUtils.swap(arr, l, ir);
}
if (arr[l + 1] > arr[ir]) {
SortUtils.swap(arr, l + 1, ir);
}
if (arr[l] > arr[l + 1]) {
SortUtils.swap(arr, l, l + 1);
}
i = l + 1;
j = ir;
a = arr[l + 1];
for (;;) {
do {
i++;
} while (arr[i] < a);
do {
j--;
} while (arr[j] > a);
if (j < i) {
break;
}
SortUtils.swap(arr, i, j);
}
arr[l + 1] = arr[j];
arr[j] = a;
if (j >= k) {
ir = j - 1;
}
if (j <= k) {
l = i;
}
}
}
}
/**
* Given k in [0, n-1], returns an array value from arr such that k array
* values are less than or equal to the one returned. The input array will
* be rearranged to have this value in location arr[k], with all smaller
* elements moved to arr[0, k-1] (in arbitrary order) and all larger elements
* in arr[k+1, n-1] (also in arbitrary order).
*/
public static double select(double[] arr, int k) {
int n = arr.length;
int l = 0;
int ir = n - 1;
double a;
int i, j, mid;
for (;;) {
if (ir <= l + 1) {
if (ir == l + 1 && arr[ir] < arr[l]) {
SortUtils.swap(arr, l, ir);
}
return arr[k];
} else {
mid = (l + ir) >> 1;
SortUtils.swap(arr, mid, l + 1);
if (arr[l] > arr[ir]) {
SortUtils.swap(arr, l, ir);
}
if (arr[l + 1] > arr[ir]) {
SortUtils.swap(arr, l + 1, ir);
}
if (arr[l] > arr[l + 1]) {
SortUtils.swap(arr, l, l + 1);
}
i = l + 1;
j = ir;
a = arr[l + 1];
for (;;) {
do {
i++;
} while (arr[i] < a);
do {
j--;
} while (arr[j] > a);
if (j < i) {
break;
}
SortUtils.swap(arr, i, j);
}
arr[l + 1] = arr[j];
arr[j] = a;
if (j >= k) {
ir = j - 1;
}
if (j <= k) {
l = i;
}
}
}
}
/**
* Given k in [0, n-1], returns an array value from arr such that k array
* values are less than or equal to the one returned. The input array will
* be rearranged to have this value in location arr[k], with all smaller
* elements moved to arr[0, k-1] (in arbitrary order) and all larger elements
* in arr[k+1, n-1] (also in arbitrary order).
*/
public static > T select(T[] arr, int k) {
int n = arr.length;
int l = 0;
int ir = n - 1;
T a;
int i, j, mid;
for (;;) {
if (ir <= l + 1) {
if (ir == l + 1 && arr[ir].compareTo(arr[l]) < 0) {
SortUtils.swap(arr, l, ir);
}
return arr[k];
} else {
mid = (l + ir) >> 1;
SortUtils.swap(arr, mid, l + 1);
if (arr[l].compareTo(arr[ir]) > 0) {
SortUtils.swap(arr, l, ir);
}
if (arr[l + 1].compareTo(arr[ir]) > 0) {
SortUtils.swap(arr, l + 1, ir);
}
if (arr[l].compareTo(arr[l + 1]) > 0) {
SortUtils.swap(arr, l, l + 1);
}
i = l + 1;
j = ir;
a = arr[l + 1];
for (;;) {
do {
i++;
} while (arr[i].compareTo(a) < 0);
do {
j--;
} while (arr[j].compareTo(a) > 0);
if (j < i) {
break;
}
SortUtils.swap(arr, i, j);
}
arr[l + 1] = arr[j];
arr[j] = a;
if (j >= k) {
ir = j - 1;
}
if (j <= k) {
l = i;
}
}
}
}
/**
* Find the median of an array of type integer.
*/
public static int median(int[] a) {
int k = a.length / 2;
return select(a, k);
}
/**
* Find the median of an array of type float.
*/
public static float median(float[] a) {
int k = a.length / 2;
return select(a, k);
}
/**
* Find the median of an array of type double.
*/
public static double median(double[] a) {
int k = a.length / 2;
return select(a, k);
}
/**
* Find the median of an array of type double.
*/
public static > T median(T[] a) {
int k = a.length / 2;
return select(a, k);
}
/**
* Find the first quantile (p = 1/4) of an array of type integer.
*/
public static int q1(int[] a) {
int k = a.length / 4;
return select(a, k);
}
/**
* Find the first quantile (p = 1/4) of an array of type float.
*/
public static float q1(float[] a) {
int k = a.length / 4;
return select(a, k);
}
/**
* Find the first quantile (p = 1/4) of an array of type double.
*/
public static double q1(double[] a) {
int k = a.length / 4;
return select(a, k);
}
/**
* Find the first quantile (p = 1/4) of an array of type double.
*/
public static > T q1(T[] a) {
int k = a.length / 4;
return select(a, k);
}
/**
* Find the third quantile (p = 3/4) of an array of type integer.
*/
public static int q3(int[] a) {
int k = 3 * a.length / 4;
return select(a, k);
}
/**
* Find the third quantile (p = 3/4) of an array of type float.
*/
public static float q3(float[] a) {
int k = 3 * a.length / 4;
return select(a, k);
}
/**
* Find the third quantile (p = 3/4) of an array of type double.
*/
public static double q3(double[] a) {
int k = 3 * a.length / 4;
return select(a, k);
}
/**
* Find the third quantile (p = 3/4) of an array of type double.
*/
public static > T q3(T[] a) {
int k = 3 * a.length / 4;
return select(a, k);
}
}