All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.sort.QuickSort Maven / Gradle / Ivy

There is a newer version: 2024.11.2
Show newest version
/*******************************************************************************
 * Copyright (c) 2010 Haifeng Li
 *   
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *  
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *******************************************************************************/
package smile.sort;

import java.util.Comparator;

/**
 * Quicksort is a well-known sorting algorithm that, on average, makes O(n log n)
 * comparisons to sort n items. For large n (say > 1000), Quicksort is faster,
 * on most machines, by a factor of 1.5 or 2 than other O(n log n) algorithms.
 * However, in the worst case, it makes O(n2) comparisons. Quicksort
 * requires a bit of extra memory.
 * 

* Quicksort is a comparison sort. A comparison sort is a type of sorting * algorithm that only reads the list elements through a single abstract * comparison operation (often a "less than or equal to" operator) that * determines which of two elements should occur first in the final sorted list. * The only requirement is that the operator obey the three defining properties * of a total order: *

    *
  • if a ≤ b and b ≤ a then a = b (antisymmetry) *
  • if a ≤ b and b ≤ c then a ≤ c (transitivity) *
  • a ≤ b or b ≤ a (totalness or trichotomy) *
*

* Quicksort, however, is not a stable sort in efficient implementations. * Stable sorting algorithms maintain the relative order of records with * equal keys. If all keys are different then this distinction is not * necessary. But if there are equal keys, then a sorting algorithm is * stable if whenever there are two records(let's say R and S) with the * same key, and R appears before S in the original list, then R will * always appear before S in the sorted list. *

* For speed of execution, we implement it without recursion. Instead, * we requires an auxiliary array (stack) of storage, of length * 2 log2 n. When a subarray has gotten down to size 7, * we sort it by straight insertion. * * @author Haifeng Li */ public class QuickSort { /** Utility classes should not have public constructors. */ private QuickSort() { } private static final int M = 7; private static final int NSTACK = 64; /** * Sorts the specified array into ascending numerical order. * @return the original index of elements after sorting in range [0, n). */ public static int[] sort(int[] arr) { int[] order = new int[arr.length]; for (int i = 0; i < order.length; i++) { order[i] = i; } sort(arr, order); return order; } /** * Besides sorting the array arr, the array brr will be also * rearranged as the same order of arr. */ public static void sort(int[] arr, int[] brr) { sort(arr, brr, arr.length); } /** * This is an effecient implementation Quick Sort algorithm without * recursive. Besides sorting the first n elements of array arr, the first * n elements of array brr will be also rearranged as the same order of arr. */ public static void sort(int[] arr, int[] brr, int n) { int jstack = -1; int l = 0; int[] istack = new int[NSTACK]; int ir = n - 1; int i, j, k, a, b; for (;;) { if (ir - l < M) { for (j = l + 1; j <= ir; j++) { a = arr[j]; b = brr[j]; for (i = j - 1; i >= l; i--) { if (arr[i] <= a) { break; } arr[i + 1] = arr[i]; brr[i + 1] = brr[i]; } arr[i + 1] = a; brr[i + 1] = b; } if (jstack < 0) { break; } ir = istack[jstack--]; l = istack[jstack--]; } else { k = (l + ir) >> 1; SortUtils.swap(arr, k, l + 1); SortUtils.swap(brr, k, l + 1); if (arr[l] > arr[ir]) { SortUtils.swap(arr, l, ir); SortUtils.swap(brr, l, ir); } if (arr[l + 1] > arr[ir]) { SortUtils.swap(arr, l + 1, ir); SortUtils.swap(brr, l + 1, ir); } if (arr[l] > arr[l + 1]) { SortUtils.swap(arr, l, l + 1); SortUtils.swap(brr, l, l + 1); } i = l + 1; j = ir; a = arr[l + 1]; b = brr[l + 1]; for (;;) { do { i++; } while (arr[i] < a); do { j--; } while (arr[j] > a); if (j < i) { break; } SortUtils.swap(arr, i, j); SortUtils.swap(brr, i, j); } arr[l + 1] = arr[j]; arr[j] = a; brr[l + 1] = brr[j]; brr[j] = b; jstack += 2; if (jstack >= NSTACK) { throw new IllegalStateException("NSTACK too small in sort."); } if (ir - i + 1 >= j - l) { istack[jstack] = ir; istack[jstack - 1] = i; ir = j - 1; } else { istack[jstack] = j - 1; istack[jstack - 1] = l; l = i; } } } } /** * Besides sorting the array arr, the array brr will be also * rearranged as the same order of arr. */ public static void sort(int[] arr, Object[] brr) { sort(arr, brr, arr.length); } /** * This is an effecient implementation Quick Sort algorithm without * recursive. Besides sorting the first n elements of array arr, the first * n elements of array brr will be also rearranged as the same order of arr. */ public static void sort(int[] arr, Object[] brr, int n) { int jstack = -1; int l = 0; int[] istack = new int[NSTACK]; int ir = n - 1; int i, j, k, a; Object b; for (;;) { if (ir - l < M) { for (j = l + 1; j <= ir; j++) { a = arr[j]; b = brr[j]; for (i = j - 1; i >= l; i--) { if (arr[i] <= a) { break; } arr[i + 1] = arr[i]; brr[i + 1] = brr[i]; } arr[i + 1] = a; brr[i + 1] = b; } if (jstack < 0) { break; } ir = istack[jstack--]; l = istack[jstack--]; } else { k = (l + ir) >> 1; SortUtils.swap(arr, k, l + 1); SortUtils.swap(brr, k, l + 1); if (arr[l] > arr[ir]) { SortUtils.swap(arr, l, ir); SortUtils.swap(brr, l, ir); } if (arr[l + 1] > arr[ir]) { SortUtils.swap(arr, l + 1, ir); SortUtils.swap(brr, l + 1, ir); } if (arr[l] > arr[l + 1]) { SortUtils.swap(arr, l, l + 1); SortUtils.swap(brr, l, l + 1); } i = l + 1; j = ir; a = arr[l + 1]; b = brr[l + 1]; for (;;) { do { i++; } while (arr[i] < a); do { j--; } while (arr[j] > a); if (j < i) { break; } SortUtils.swap(arr, i, j); SortUtils.swap(brr, i, j); } arr[l + 1] = arr[j]; arr[j] = a; brr[l + 1] = brr[j]; brr[j] = b; jstack += 2; if (jstack >= NSTACK) { throw new IllegalStateException("NSTACK too small in sort."); } if (ir - i + 1 >= j - l) { istack[jstack] = ir; istack[jstack - 1] = i; ir = j - 1; } else { istack[jstack] = j - 1; istack[jstack - 1] = l; l = i; } } } } /** * Sorts the specified array into ascending numerical order. * @return the original index of elements after sorting in range [0, n). */ public static int[] sort(float[] arr) { int[] order = new int[arr.length]; for (int i = 0; i < order.length; i++) { order[i] = i; } sort(arr, order); return order; } /** * Besides sorting the array arr, the array brr will be also * rearranged as the same order of arr. */ public static void sort(float[] arr, int[] brr) { sort(arr, brr, arr.length); } /** * This is an effecient implementation Quick Sort algorithm without * recursive. Besides sorting the first n elements of array arr, the first * n elements of array brr will be also rearranged as the same order of arr. */ public static void sort(float[] arr, int[] brr, int n) { int jstack = -1; int l = 0; int[] istack = new int[NSTACK]; int ir = n - 1; int i, j, k; float a; int b; for (;;) { if (ir - l < M) { for (j = l + 1; j <= ir; j++) { a = arr[j]; b = brr[j]; for (i = j - 1; i >= l; i--) { if (arr[i] <= a) { break; } arr[i + 1] = arr[i]; brr[i + 1] = brr[i]; } arr[i + 1] = a; brr[i + 1] = b; } if (jstack < 0) { break; } ir = istack[jstack--]; l = istack[jstack--]; } else { k = (l + ir) >> 1; SortUtils.swap(arr, k, l + 1); SortUtils.swap(brr, k, l + 1); if (arr[l] > arr[ir]) { SortUtils.swap(arr, l, ir); SortUtils.swap(brr, l, ir); } if (arr[l + 1] > arr[ir]) { SortUtils.swap(arr, l + 1, ir); SortUtils.swap(brr, l + 1, ir); } if (arr[l] > arr[l + 1]) { SortUtils.swap(arr, l, l + 1); SortUtils.swap(brr, l, l + 1); } i = l + 1; j = ir; a = arr[l + 1]; b = brr[l + 1]; for (;;) { do { i++; } while (arr[i] < a); do { j--; } while (arr[j] > a); if (j < i) { break; } SortUtils.swap(arr, i, j); SortUtils.swap(brr, i, j); } arr[l + 1] = arr[j]; arr[j] = a; brr[l + 1] = brr[j]; brr[j] = b; jstack += 2; if (jstack >= NSTACK) { throw new IllegalStateException("NSTACK too small in sort."); } if (ir - i + 1 >= j - l) { istack[jstack] = ir; istack[jstack - 1] = i; ir = j - 1; } else { istack[jstack] = j - 1; istack[jstack - 1] = l; l = i; } } } } /** * Besides sorting the array arr, the array brr will be also * rearranged as the same order of arr. */ public static void sort(float[] arr, float[] brr) { sort(arr, brr, arr.length); } /** * This is an effecient implementation Quick Sort algorithm without * recursive. Besides sorting the first n elements of array arr, the first * n elements of array brr will be also rearranged as the same order of arr. */ public static void sort(float[] arr, float[] brr, int n) { int jstack = -1; int l = 0; int[] istack = new int[NSTACK]; int ir = n - 1; int i, j, k; float a, b; for (;;) { if (ir - l < M) { for (j = l + 1; j <= ir; j++) { a = arr[j]; b = brr[j]; for (i = j - 1; i >= l; i--) { if (arr[i] <= a) { break; } arr[i + 1] = arr[i]; brr[i + 1] = brr[i]; } arr[i + 1] = a; brr[i + 1] = b; } if (jstack < 0) { break; } ir = istack[jstack--]; l = istack[jstack--]; } else { k = (l + ir) >> 1; SortUtils.swap(arr, k, l + 1); SortUtils.swap(brr, k, l + 1); if (arr[l] > arr[ir]) { SortUtils.swap(arr, l, ir); SortUtils.swap(brr, l, ir); } if (arr[l + 1] > arr[ir]) { SortUtils.swap(arr, l + 1, ir); SortUtils.swap(brr, l + 1, ir); } if (arr[l] > arr[l + 1]) { SortUtils.swap(arr, l, l + 1); SortUtils.swap(brr, l, l + 1); } i = l + 1; j = ir; a = arr[l + 1]; b = brr[l + 1]; for (;;) { do { i++; } while (arr[i] < a); do { j--; } while (arr[j] > a); if (j < i) { break; } SortUtils.swap(arr, i, j); SortUtils.swap(brr, i, j); } arr[l + 1] = arr[j]; arr[j] = a; brr[l + 1] = brr[j]; brr[j] = b; jstack += 2; if (jstack >= NSTACK) { throw new IllegalStateException("NSTACK too small in sort."); } if (ir - i + 1 >= j - l) { istack[jstack] = ir; istack[jstack - 1] = i; ir = j - 1; } else { istack[jstack] = j - 1; istack[jstack - 1] = l; l = i; } } } } /** * Besides sorting the array arr, the array brr will be also * rearranged as the same order of arr. */ public static void sort(float[] arr, Object[] brr) { sort(arr, brr, arr.length); } /** * This is an effecient implementation Quick Sort algorithm without * recursive. Besides sorting the first n elements of array arr, the first * n elements of array brr will be also rearranged as the same order of arr. */ public static void sort(float[] arr, Object[] brr, int n) { int jstack = -1; int l = 0; int[] istack = new int[NSTACK]; int ir = n - 1; int i, j, k; float a; Object b; for (;;) { if (ir - l < M) { for (j = l + 1; j <= ir; j++) { a = arr[j]; b = brr[j]; for (i = j - 1; i >= l; i--) { if (arr[i] <= a) { break; } arr[i + 1] = arr[i]; brr[i + 1] = brr[i]; } arr[i + 1] = a; brr[i + 1] = b; } if (jstack < 0) { break; } ir = istack[jstack--]; l = istack[jstack--]; } else { k = (l + ir) >> 1; SortUtils.swap(arr, k, l + 1); SortUtils.swap(brr, k, l + 1); if (arr[l] > arr[ir]) { SortUtils.swap(arr, l, ir); SortUtils.swap(brr, l, ir); } if (arr[l + 1] > arr[ir]) { SortUtils.swap(arr, l + 1, ir); SortUtils.swap(brr, l + 1, ir); } if (arr[l] > arr[l + 1]) { SortUtils.swap(arr, l, l + 1); SortUtils.swap(brr, l, l + 1); } i = l + 1; j = ir; a = arr[l + 1]; b = brr[l + 1]; for (;;) { do { i++; } while (arr[i] < a); do { j--; } while (arr[j] > a); if (j < i) { break; } SortUtils.swap(arr, i, j); SortUtils.swap(brr, i, j); } arr[l + 1] = arr[j]; arr[j] = a; brr[l + 1] = brr[j]; brr[j] = b; jstack += 2; if (jstack >= NSTACK) { throw new IllegalStateException("NSTACK too small in sort."); } if (ir - i + 1 >= j - l) { istack[jstack] = ir; istack[jstack - 1] = i; ir = j - 1; } else { istack[jstack] = j - 1; istack[jstack - 1] = l; l = i; } } } } /** * Sorts the specified array into ascending numerical order. * @return the original index of elements after sorting in range [0, n). */ public static int[] sort(double[] arr) { int[] order = new int[arr.length]; for (int i = 0; i < order.length; i++) { order[i] = i; } sort(arr, order); return order; } /** * Besides sorting the array arr, the array brr will be also * rearranged as the same order of arr. */ public static void sort(double[] arr, int[] brr) { sort(arr, brr, arr.length); } /** * This is an effecient implementation Quick Sort algorithm without * recursive. Besides sorting the first n elements of array arr, the first * n elements of array brr will be also rearranged as the same order of arr. */ public static void sort(double[] arr, int[] brr, int n) { int jstack = -1; int l = 0; int[] istack = new int[NSTACK]; int ir = n - 1; int i, j, k; double a; int b; for (;;) { if (ir - l < M) { for (j = l + 1; j <= ir; j++) { a = arr[j]; b = brr[j]; for (i = j - 1; i >= l; i--) { if (arr[i] <= a) { break; } arr[i + 1] = arr[i]; brr[i + 1] = brr[i]; } arr[i + 1] = a; brr[i + 1] = b; } if (jstack < 0) { break; } ir = istack[jstack--]; l = istack[jstack--]; } else { k = (l + ir) >> 1; SortUtils.swap(arr, k, l + 1); SortUtils.swap(brr, k, l + 1); if (arr[l] > arr[ir]) { SortUtils.swap(arr, l, ir); SortUtils.swap(brr, l, ir); } if (arr[l + 1] > arr[ir]) { SortUtils.swap(arr, l + 1, ir); SortUtils.swap(brr, l + 1, ir); } if (arr[l] > arr[l + 1]) { SortUtils.swap(arr, l, l + 1); SortUtils.swap(brr, l, l + 1); } i = l + 1; j = ir; a = arr[l + 1]; b = brr[l + 1]; for (;;) { do { i++; } while (arr[i] < a); do { j--; } while (arr[j] > a); if (j < i) { break; } SortUtils.swap(arr, i, j); SortUtils.swap(brr, i, j); } arr[l + 1] = arr[j]; arr[j] = a; brr[l + 1] = brr[j]; brr[j] = b; jstack += 2; if (jstack >= NSTACK) { throw new IllegalStateException("NSTACK too small in sort."); } if (ir - i + 1 >= j - l) { istack[jstack] = ir; istack[jstack - 1] = i; ir = j - 1; } else { istack[jstack] = j - 1; istack[jstack - 1] = l; l = i; } } } } /** * This is an effecient implementation Quick Sort algorithm without * recursive. Besides sorting the array arr, the array brr will be also * rearranged as the same order of arr. */ public static void sort(double[] arr, double[] brr) { sort(arr, brr, arr.length); } /** * This is an effecient implementation Quick Sort algorithm without * recursive. Besides sorting the first n elements of array arr, the first * n elements of array brr will be also rearranged as the same order of arr. */ public static void sort(double[] arr, double[] brr, int n) { int jstack = -1; int l = 0; int[] istack = new int[NSTACK]; int ir = n - 1; int i, j, k; double a, b; for (;;) { if (ir - l < M) { for (j = l + 1; j <= ir; j++) { a = arr[j]; b = brr[j]; for (i = j - 1; i >= l; i--) { if (arr[i] <= a) { break; } arr[i + 1] = arr[i]; brr[i + 1] = brr[i]; } arr[i + 1] = a; brr[i + 1] = b; } if (jstack < 0) { break; } ir = istack[jstack--]; l = istack[jstack--]; } else { k = (l + ir) >> 1; SortUtils.swap(arr, k, l + 1); SortUtils.swap(brr, k, l + 1); if (arr[l] > arr[ir]) { SortUtils.swap(arr, l, ir); SortUtils.swap(brr, l, ir); } if (arr[l + 1] > arr[ir]) { SortUtils.swap(arr, l + 1, ir); SortUtils.swap(brr, l + 1, ir); } if (arr[l] > arr[l + 1]) { SortUtils.swap(arr, l, l + 1); SortUtils.swap(brr, l, l + 1); } i = l + 1; j = ir; a = arr[l + 1]; b = brr[l + 1]; for (;;) { do { i++; } while (arr[i] < a); do { j--; } while (arr[j] > a); if (j < i) { break; } SortUtils.swap(arr, i, j); SortUtils.swap(brr, i, j); } arr[l + 1] = arr[j]; arr[j] = a; brr[l + 1] = brr[j]; brr[j] = b; jstack += 2; if (jstack >= NSTACK) { throw new IllegalStateException("NSTACK too small in sort."); } if (ir - i + 1 >= j - l) { istack[jstack] = ir; istack[jstack - 1] = i; ir = j - 1; } else { istack[jstack] = j - 1; istack[jstack - 1] = l; l = i; } } } } /** * Besides sorting the array arr, the array brr will be also * rearranged as the same order of arr. */ public static void sort(double[] arr, Object[] brr) { sort(arr, brr, arr.length); } /** * This is an effecient implementation Quick Sort algorithm without * recursive. Besides sorting the first n elements of array arr, the first * n elements of array brr will be also rearranged as the same order of arr. */ public static void sort(double[] arr, Object[] brr, int n) { int jstack = -1; int l = 0; int[] istack = new int[NSTACK]; int ir = n - 1; int i, j, k; double a; Object b; for (;;) { if (ir - l < M) { for (j = l + 1; j <= ir; j++) { a = arr[j]; b = brr[j]; for (i = j - 1; i >= l; i--) { if (arr[i] <= a) { break; } arr[i + 1] = arr[i]; brr[i + 1] = brr[i]; } arr[i + 1] = a; brr[i + 1] = b; } if (jstack < 0) { break; } ir = istack[jstack--]; l = istack[jstack--]; } else { k = (l + ir) >> 1; SortUtils.swap(arr, k, l + 1); SortUtils.swap(brr, k, l + 1); if (arr[l] > arr[ir]) { SortUtils.swap(arr, l, ir); SortUtils.swap(brr, l, ir); } if (arr[l + 1] > arr[ir]) { SortUtils.swap(arr, l + 1, ir); SortUtils.swap(brr, l + 1, ir); } if (arr[l] > arr[l + 1]) { SortUtils.swap(arr, l, l + 1); SortUtils.swap(brr, l, l + 1); } i = l + 1; j = ir; a = arr[l + 1]; b = brr[l + 1]; for (;;) { do { i++; } while (arr[i] < a); do { j--; } while (arr[j] > a); if (j < i) { break; } SortUtils.swap(arr, i, j); SortUtils.swap(brr, i, j); } arr[l + 1] = arr[j]; arr[j] = a; brr[l + 1] = brr[j]; brr[j] = b; jstack += 2; if (jstack >= NSTACK) { throw new IllegalStateException("NSTACK too small in sort."); } if (ir - i + 1 >= j - l) { istack[jstack] = ir; istack[jstack - 1] = i; ir = j - 1; } else { istack[jstack] = j - 1; istack[jstack - 1] = l; l = i; } } } } /** * Sorts the specified array into ascending order. * @return the original index of elements after sorting in range [0, n). */ public static > int[] sort(T[] arr) { int[] order = new int[arr.length]; for (int i = 0; i < order.length; i++) { order[i] = i; } sort(arr, order); return order; } /** * Besides sorting the array arr, the array brr will be also * rearranged as the same order of arr. */ public static > void sort(T[] arr, int[] brr) { sort(arr, brr, arr.length); } /** * This is an effecient implementation Quick Sort algorithm without * recursive. Besides sorting the first n elements of array arr, the first * n elements of array brr will be also rearranged as the same order of arr. */ public static > void sort(T[] arr, int[] brr, int n) { int jstack = -1; int l = 0; int[] istack = new int[NSTACK]; int ir = n - 1; int i, j, k; T a; int b; for (;;) { if (ir - l < M) { for (j = l + 1; j <= ir; j++) { a = arr[j]; b = brr[j]; for (i = j - 1; i >= l; i--) { if (arr[i].compareTo(a) <= 0) { break; } arr[i + 1] = arr[i]; brr[i + 1] = brr[i]; } arr[i + 1] = a; brr[i + 1] = b; } if (jstack < 0) { break; } ir = istack[jstack--]; l = istack[jstack--]; } else { k = (l + ir) >> 1; SortUtils.swap(arr, k, l + 1); SortUtils.swap(brr, k, l + 1); if (arr[l].compareTo(arr[ir]) > 0) { SortUtils.swap(arr, l, ir); SortUtils.swap(brr, l, ir); } if (arr[l + 1].compareTo(arr[ir]) > 0) { SortUtils.swap(arr, l + 1, ir); SortUtils.swap(brr, l + 1, ir); } if (arr[l].compareTo(arr[l + 1]) > 0) { SortUtils.swap(arr, l, l + 1); SortUtils.swap(brr, l, l + 1); } i = l + 1; j = ir; a = arr[l + 1]; b = brr[l + 1]; for (;;) { do { i++; } while (arr[i].compareTo(a) < 0); do { j--; } while (arr[j].compareTo(a) > 0); if (j < i) { break; } SortUtils.swap(arr, i, j); SortUtils.swap(brr, i, j); } arr[l + 1] = arr[j]; arr[j] = a; brr[l + 1] = brr[j]; brr[j] = b; jstack += 2; if (jstack >= NSTACK) { throw new IllegalStateException("NSTACK too small in sort."); } if (ir - i + 1 >= j - l) { istack[jstack] = ir; istack[jstack - 1] = i; ir = j - 1; } else { istack[jstack] = j - 1; istack[jstack - 1] = l; l = i; } } } } /** * This is an effecient implementation Quick Sort algorithm without * recursive. Besides sorting the first n elements of array arr, the first * n elements of array brr will be also rearranged as the same order of arr. */ public static void sort(T[] arr, int[] brr, int n, Comparator comparator) { int jstack = -1; int l = 0; int[] istack = new int[NSTACK]; int ir = n - 1; int i, j, k; T a; int b; for (;;) { if (ir - l < M) { for (j = l + 1; j <= ir; j++) { a = arr[j]; b = brr[j]; for (i = j - 1; i >= l; i--) { if (comparator.compare(arr[i], a) <= 0) { break; } arr[i + 1] = arr[i]; brr[i + 1] = brr[i]; } arr[i + 1] = a; brr[i + 1] = b; } if (jstack < 0) { break; } ir = istack[jstack--]; l = istack[jstack--]; } else { k = (l + ir) >> 1; SortUtils.swap(arr, k, l + 1); SortUtils.swap(brr, k, l + 1); if (comparator.compare(arr[l], arr[ir]) > 0) { SortUtils.swap(arr, l, ir); SortUtils.swap(brr, l, ir); } if (comparator.compare(arr[l + 1], arr[ir]) > 0) { SortUtils.swap(arr, l + 1, ir); SortUtils.swap(brr, l + 1, ir); } if (comparator.compare(arr[l], arr[l + 1]) > 0) { SortUtils.swap(arr, l, l + 1); SortUtils.swap(brr, l, l + 1); } i = l + 1; j = ir; a = arr[l + 1]; b = brr[l + 1]; for (;;) { do { i++; } while (comparator.compare(arr[i], a) < 0); do { j--; } while (comparator.compare(arr[j], a) > 0); if (j < i) { break; } SortUtils.swap(arr, i, j); SortUtils.swap(brr, i, j); } arr[l + 1] = arr[j]; arr[j] = a; brr[l + 1] = brr[j]; brr[j] = b; jstack += 2; if (jstack >= NSTACK) { throw new IllegalStateException("NSTACK too small in sort."); } if (ir - i + 1 >= j - l) { istack[jstack] = ir; istack[jstack - 1] = i; ir = j - 1; } else { istack[jstack] = j - 1; istack[jstack - 1] = l; l = i; } } } } /** * Besides sorting the array arr, the array brr will be also * rearranged as the same order of arr. */ public static > void sort(T[] arr, Object[] brr) { sort(arr, brr, arr.length); } /** * This is an effecient implementation Quick Sort algorithm without * recursive. Besides sorting the first n elements of array arr, the first * n elements of array brr will be also rearranged as the same order of arr. */ public static > void sort(T[] arr, Object[] brr, int n) { int jstack = -1; int l = 0; int[] istack = new int[NSTACK]; int ir = n - 1; int i, j, k; T a; Object b; for (;;) { if (ir - l < M) { for (j = l + 1; j <= ir; j++) { a = arr[j]; b = brr[j]; for (i = j - 1; i >= l; i--) { if (arr[i].compareTo(a) <= 0) { break; } arr[i + 1] = arr[i]; brr[i + 1] = brr[i]; } arr[i + 1] = a; brr[i + 1] = b; } if (jstack < 0) { break; } ir = istack[jstack--]; l = istack[jstack--]; } else { k = (l + ir) >> 1; SortUtils.swap(arr, k, l + 1); SortUtils.swap(brr, k, l + 1); if (arr[l].compareTo(arr[ir]) > 0) { SortUtils.swap(arr, l, ir); SortUtils.swap(brr, l, ir); } if (arr[l + 1].compareTo(arr[ir]) > 0) { SortUtils.swap(arr, l + 1, ir); SortUtils.swap(brr, l + 1, ir); } if (arr[l].compareTo(arr[l + 1]) > 0) { SortUtils.swap(arr, l, l + 1); SortUtils.swap(brr, l, l + 1); } i = l + 1; j = ir; a = arr[l + 1]; b = brr[l + 1]; for (;;) { do { i++; } while (arr[i].compareTo(a) < 0); do { j--; } while (arr[j].compareTo(a) > 0); if (j < i) { break; } SortUtils.swap(arr, i, j); SortUtils.swap(brr, i, j); } arr[l + 1] = arr[j]; arr[j] = a; brr[l + 1] = brr[j]; brr[j] = b; jstack += 2; if (jstack >= NSTACK) { throw new IllegalStateException("NSTACK too small in sort."); } if (ir - i + 1 >= j - l) { istack[jstack] = ir; istack[jstack - 1] = i; ir = j - 1; } else { istack[jstack] = j - 1; istack[jstack - 1] = l; l = i; } } } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy