com.actelion.research.calc.regression.svm.AnalyticalParameterCalculatorSVM Maven / Gradle / Ivy
Show all versions of openchemlib Show documentation
/*
* Copyright (c) 1997 - 2016
* Actelion Pharmaceuticals Ltd.
* Gewerbestrasse 16
* CH-4123 Allschwil, Switzerland
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of the the copyright holder nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* @author Modest v. Korff
*/
package com.actelion.research.calc.regression.svm;
import com.actelion.research.calc.Matrix;
import com.actelion.research.calc.statistics.ModelStatisticsOverview;
import com.actelion.research.calc.statistics.StatisticsOverview;
import com.actelion.research.util.Formatter;
import com.actelion.research.util.datamodel.DoubleArray;
import com.actelion.research.util.datamodel.ModelXYIndex;
import com.actelion.research.calc.regression.ModelError;
import com.actelion.research.calc.regression.knn.KNNRegression;
import org.machinelearning.svm.libsvm.svm_parameter;
/**
* AnalyticalParameterCalculatorSVM
* Modest v. Korff
*
* Created by korffmo1 on 01.11.19.
*/
public class AnalyticalParameterCalculatorSVM {
public static ParameterSVM calculate(ModelXYIndex modelXYTrain){
System.out.println("AnalyticalParameterCalculatorSVM");
//
// Parameter C
//
if(modelXYTrain.Y.cols() != 1) {
throw new RuntimeException("Only single col allowed for Y!");
}
double rows = modelXYTrain.X.rows();
System.out.println("Rows X train " + (int)rows);
DoubleArray daY = new DoubleArray(modelXYTrain.Y.getColAsDouble(0));
StatisticsOverview statisticsOverview = new StatisticsOverview(daY);
ModelStatisticsOverview modelStatisticsOverviewY = statisticsOverview.evaluate();
double sigmaY = modelStatisticsOverviewY.sdv;
System.out.println("Sigma in y " + Formatter.format3(sigmaY));
double avr = modelStatisticsOverviewY.avr;
System.out.println("Average in y " + Formatter.format3(avr));
//
// Cherkassky, Vladimir, and Yunqian Ma.
// "Practical selection of SVM parameters and noise estimation for SVM regression."
// Neural networks 17.1 (2004): 113-126.
// p5 equation 11
double C = Math.max(Math.abs(avr-sigmaY*3), Math.abs(avr+sigmaY*3));
System.out.println("C " + Formatter.format3(C));
KNNRegression knnRegression = new KNNRegression();
final int k = 3;
knnRegression.setNeighbours(k);
Matrix yHat = knnRegression.createModel(modelXYTrain);
ModelError modelErrorKNN = ModelError.calculateError(modelXYTrain.Y, yHat);
// Cherkassky, Vladimir, and Yunqian Ma.
// "Practical selection of SVM parameters and noise estimation for SVM regression."
// Neural networks 17.1 (2004): 113-126.
// p18 equation 23
double sigmaSquaredYHat = k/(k-1) * 1.0/rows * modelErrorKNN.errSumSquared;
System.out.println("Sigma squared y hat " + Formatter.format3(sigmaSquaredYHat));
// Cherkassky, Vladimir, and Yunqian Ma.
// "Practical selection of SVM parameters and noise estimation for SVM regression."
// Neural networks 17.1 (2004): 113-126.
// p6 equation 14
final double tau = 3;
double epsilon = tau * Math.sqrt(sigmaSquaredYHat) * Math.sqrt(Math.log(rows)/rows);
System.out.println("Epsilon " + Formatter.format3(epsilon));
double gamma = 1.0 / modelXYTrain.X.cols();
System.out.println("Gamma " + Formatter.format4(gamma));
int kernelType = svm_parameter.RBF;
svm_parameter svmParameter = SVMParameterHelper.regressionEpsilonSVR();
svmParameter.kernel_type = kernelType;
svmParameter.eps = epsilon;
svmParameter.C = C;
svmParameter.gamma = gamma;
svmParameter.degree = 0;
ParameterSVM parameterSVM = new ParameterSVM(svmParameter);
return parameterSVM;
}
}