All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.actelion.research.orbit.imageAnalysis.modules.ThresholdModule Maven / Gradle / Ivy

Go to download

Orbit, a versatile image analysis software for biological image-based quantification

There is a newer version: 3.15
Show newest version
/*
 *     Orbit, a versatile image analysis software for biological image-based quantification.
 *     Copyright (C) 2009 - 2017 Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, CH-4123 Allschwil, Switzerland.
 *
 *     This program is free software: you can redistribute it and/or modify
 *     it under the terms of the GNU General Public License as published by
 *     the Free Software Foundation, either version 3 of the License, or
 *     (at your option) any later version.
 *
 *     This program is distributed in the hope that it will be useful,
 *     but WITHOUT ANY WARRANTY; without even the implied warranty of
 *     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *     GNU General Public License for more details.
 *
 *     You should have received a copy of the GNU General Public License
 *     along with this program.  If not, see .
 *
 */

package com.actelion.research.orbit.imageAnalysis.modules;

import com.actelion.research.orbit.imageAnalysis.components.AbstractOrbitModule;
import com.actelion.research.orbit.imageAnalysis.components.OrbitImageAnalysis;
import com.actelion.research.orbit.imageAnalysis.components.RangeBar;
import com.actelion.research.orbit.imageAnalysis.models.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import javax.swing.*;
import java.awt.*;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.util.List;

public class ThresholdModule extends AbstractOrbitModule {

    private static final long serialVersionUID = 1L;
    private final static Logger logger = LoggerFactory.getLogger(ThresholdModule.class);
    private JButton btnMakeClassifier = new JButton("Set Classifier");
    private RangeBar intensBar = new RangeBar(0, 255);

    public ThresholdModule() {
        btnMakeClassifier.addActionListener(new ActionListener() {
            public void actionPerformed(ActionEvent arg0) {
                makeClassifier();
            }
        });

        setLayout(new BorderLayout());
        String text = "
    " + "
  1. Set min (black) and max (white) intensity.
  2. " + "
  3. Click on 'Set Classifier'.
  4. " + "
  5. Click on 'classify' (toolbar).
  6. " + "
  7. Use the classification slider (in the image) to see the result.
  8. " + "
"; JLabel label = new JLabel(text); add(label, BorderLayout.NORTH); add(intensBar, BorderLayout.CENTER); add(btnMakeClassifier, BorderLayout.SOUTH); } private void makeClassifier() { int numBlur = OrbitImageAnalysis.getInstance().getModel().getFeatureDescription().getNumBlur(); boolean skipRed = OrbitImageAnalysis.getInstance().getModel().getFeatureDescription().isSkipRed(); boolean skipGreen = OrbitImageAnalysis.getInstance().getModel().getFeatureDescription().isSkipGreen(); boolean skipBlue = OrbitImageAnalysis.getInstance().getModel().getFeatureDescription().isSkipBlue(); int deconvChannel = OrbitImageAnalysis.getInstance().getModel().getFeatureDescription().getDeconvChannel(); String deconvName = OrbitImageAnalysis.getInstance().getModel().getFeatureDescription().getDeconvName(); boolean useImageAdjustments = OrbitImageAnalysis.getInstance().getModel().getFeatureDescription().isUseImageAdjustments(); String[] activeFluoChannels = OrbitImageAnalysis.getInstance().getModel().getFeatureDescription().getActiveFluoChannels(); FeatureDescription fd = new FeatureDescription(1, 3, FeatureDescription.FEATURE_SET_INTENS, 0, false, numBlur, skipRed, skipGreen, skipBlue, 1, null, false, false, deconvChannel, deconvName, useImageAdjustments,activeFluoChannels,false,0,0); List classShapes = OrbitImageAnalysis.getInstance().getModel().getClassShapes(); if (classShapes.size() < 2) { logger.error("Please define a two class setup (negative (<=threthold) and positive (>threshold) class"); } ClassifierWrapper classifier = new ClassifierWrapper(new ThresholdClassifier( new double[]{intensBar.getLowValue(), Double.NaN, Double.NaN}, new double[]{intensBar.getHighValue(), Double.NaN, Double.NaN})); classifier.setBuild(true); OrbitModel model = new OrbitModel(classifier, null, classShapes, fd); OrbitImageAnalysis.getInstance().setModel(model); } @Override public String getName() { return "Threshold Classification"; } @Override public void init() { } @Override public void reset() { // TODO Auto-generated method stub } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy