All Downloads are FREE. Search and download functionalities are using the official Maven repository.

imageJ.RankFiltersOrbit Maven / Gradle / Ivy

Go to download

Orbit, a versatile image analysis software for biological image-based quantification

There is a newer version: 3.15
Show newest version

package imageJ;

import ij.*;
import ij.gui.DialogListener;
import ij.gui.GenericDialog;
import ij.gui.Roi;
import ij.plugin.ContrastEnhancer;
import ij.plugin.filter.ExtendedPlugInFilter;
import ij.plugin.filter.PlugInFilterRunner;
import ij.process.ColorProcessor;
import ij.process.FloatProcessor;
import ij.process.ImageProcessor;

import java.awt.*;
import java.util.Arrays;

/** This plugin implements the Mean, Minimum, Maximum, Variance, Median, Open Maxima, Close Maxima,
 *	Remove Outliers, Remove NaNs and Despeckle commands.
 */
// Version 2012-07-15 M. Schmid:	Fixes a bug that could cause preview not to work correctly
// Version 2012-12-23 M. Schmid:	Test for inverted LUT only once (not in each slice)

public class RankFiltersOrbit implements ExtendedPlugInFilter, DialogListener {
	public static final int	 MEAN=0, MIN=1, MAX=2, VARIANCE=3, MEDIAN=4, OUTLIERS=5, DESPECKLE=6, REMOVE_NAN=7,
			OPEN=8, CLOSE=9;
	private static int HIGHEST_FILTER = CLOSE;
	private static final int BRIGHT_OUTLIERS = 0, DARK_OUTLIERS = 1;
	private static final String[] outlierStrings = {"Bright","Dark"};
	// Filter parameters
	private double radius;
	private double threshold;
	private int whichOutliers;
	private int filterType;
	// Remember filter parameters for the next time
	private static double[] lastRadius = new double[HIGHEST_FILTER+1]; //separate for each filter type
	private static double lastThreshold = 50.;
	private static int lastWhichOutliers = BRIGHT_OUTLIERS;
	//
	// F u r t h e r   c l a s s   v a r i a b l e s
	int flags = DOES_ALL|SUPPORTS_MASKING|KEEP_PREVIEW;
	private ImagePlus imp;
	private int nPasses = 1;			// The number of passes (color channels * stack slices)
	private PlugInFilterRunner pfr;
	private int pass;
	// M u l t i t h r e a d i n g - r e l a t e d
	private int numThreads = Prefs.getThreads();
	// Current state of processing is in class variables. Thus, stack parallelization must be done
	// ONLY with one thread for the image (not using these class variables):
	private int highestYinCache;		// the highest line read into the cache so far
	private boolean threadWaiting;		// a thread waits until it may read data
	private boolean copyingToCache;		// whether a thread is currently copying data to the cache

	private boolean isMultiStepFilter(int filterType) {
		return filterType>=OPEN;
	}

	/** Setup of the PlugInFilter. Returns the flags specifying the capabilities and needs
	 * of the filter.
	 *
	 * @param arg	Defines type of filter operation
	 * @param imp	The ImagePlus to be processed
	 * @return		Flags specifying further action of the PlugInFilterRunner
	 */
	public int setup(String arg, ImagePlus imp) {
		this.imp = imp;
		if (arg.equals("mean"))
			filterType = MEAN;
		else if (arg.equals("min"))
			filterType = MIN;
		else if (arg.equals("max"))
			filterType = MAX;
		else if (arg.equals("variance")) {
			filterType = VARIANCE;
			flags |= FINAL_PROCESSING;
		} else if (arg.equals("median"))
			filterType = MEDIAN;
		else if (arg.equals("outliers"))
			filterType = OUTLIERS;
		else if (arg.equals("despeckle"))
			filterType = DESPECKLE;
		else if (arg.equals("close"))
			filterType = CLOSE;
		else if (arg.equals("open"))
			filterType = OPEN;
		else if (arg.equals("nan")) {
			filterType = REMOVE_NAN;
			if (imp!=null && imp.getBitDepth()!=32) {
				IJ.error("RankFilters","\"Remove NaNs\" requires a 32-bit image");
				return DONE;
			}
		} else if (arg.equals("final")) {	//after variance filter, adjust brightness&contrast
			if (imp!=null  && imp.getBitDepth()!=8 && imp.getBitDepth()!=24 && imp.getRoi()==null)
				new ContrastEnhancer().stretchHistogram(imp.getProcessor(), 0.5);
		} else if (arg.equals("masks")) {
			showMasks();
			return DONE;
		} else {
			IJ.error("RankFilters","Argument missing or undefined: "+arg);
			return DONE;
		}
		if (isMultiStepFilter(filterType) && imp!=null) {  //composite filter: 'open maxima' etc:
			Roi roi = imp.getRoi();
			if (roi!=null && !roi.getBounds().contains(new Rectangle(imp.getWidth(), imp.getHeight())))
				//Roi < image? (actually tested: NOT (Roi>=image))
				flags |= SNAPSHOT;			//snapshot for resetRoiBoundary
		}
		return flags;
	}

	public int showDialog(ImagePlus imp, String command, PlugInFilterRunner pfr) {
		if (filterType == DESPECKLE) {
			filterType = MEDIAN;
			radius = 1.0;
		} else {
			GenericDialog gd = new GenericDialog(command+"...");
			radius = lastRadius[filterType]<=0 ? 2 :  lastRadius[filterType];
			gd.addNumericField("Radius", radius, 1, 6, "pixels");
			int digits = imp.getType() == ImagePlus.GRAY32 ? 2 : 0;
			if (filterType==OUTLIERS) {
				gd.addNumericField("Threshold", lastThreshold, digits);
				gd.addChoice("Which outliers", outlierStrings, outlierStrings[lastWhichOutliers]);
				gd.addHelp(IJ.URL+"/docs/menus/process.html#outliers");
			} else if (filterType==REMOVE_NAN)
				gd.addHelp(IJ.URL+"/docs/menus/process.html#nans");
			gd.addPreviewCheckbox(pfr);		//passing pfr makes the filter ready for preview
			gd.addDialogListener(this);		//the DialogItemChanged method will be called on user input
			gd.showDialog();				//display the dialog; preview runs in the  now
			if (gd.wasCanceled()) return DONE;
			IJ.register(this.getClass());	//protect static class variables (filter parameters) from garbage collection
			if (Macro.getOptions() == null) { //interactive only: remember parameters entered
				lastRadius[filterType] = radius;
				if (filterType == OUTLIERS) {
					lastThreshold = threshold;
					lastWhichOutliers = whichOutliers;
				}
			}
		}
		this.pfr = pfr;
		flags = IJ.setupDialog(imp, flags); //ask whether to process all slices of stack (if a stack)
		if ((flags&DOES_STACKS)!=0) {
			int size = imp.getWidth() * imp.getHeight();
			Roi roi = imp.getRoi();
			if (roi != null) {
				Rectangle roiRect = roi.getBounds();
				size = roiRect.width * roiRect.height;
			}
			double workToDo = size * radius;    //estimate computing time (arb. units)
			if (filterType==MEAN || filterType==VARIANCE) workToDo *= 0.5;
			else if (filterType==MEDIAN) workToDo *= radius*0.5;
			if (workToDo < 1e6 && imp.getImageStackSize()>=numThreads) {
				numThreads = 1;				//for fast operations, avoid overhead of multi-threading in each image
				flags |= PARALLELIZE_STACKS;
			}
		}
		return flags;
	}

	public boolean dialogItemChanged(GenericDialog gd, AWTEvent e) {
		radius = gd.getNextNumber();
		if (filterType == OUTLIERS) {
			threshold = gd.getNextNumber();
			whichOutliers = gd.getNextChoiceIndex();
		}
		int maxRadius = (filterType==MEDIAN || filterType==OUTLIERS || filterType==REMOVE_NAN) ? 100 : 1000;
		return !(gd.invalidNumber() || radius < 0 || radius > maxRadius || (filterType == OUTLIERS && threshold < 0));
	}

	/**
	 * Manuel: added to call this filter from external
	 * @param ip
	 * @param radius
	 * @return
	 */
	public ImagePlus  doRemoveOutliers(ImagePlus ip, double radius) {
		this.threshold = 0.5f;
		setup("outliers",ip);
		this.whichOutliers=BRIGHT_OUTLIERS;
		makeKernel(radius);
		//ip.setProcessor(ip.getProcessor().convertToFloat());
		run(ip.getProcessor());
		//ip.setProcessor(ip.getProcessor().convertToRGB());
		return ip;
	}

	public void run(ImageProcessor ip) {
		rank(ip, radius, filterType, whichOutliers, (float)threshold);
		if (IJ.escapePressed())									// interrupted by user?
			ip.reset();
	}

	/** Filters an image by any method except 'despecle' or 'remove outliers'.
	 *	@param ip	   The ImageProcessor that should be filtered (all 4 types supported)
	 *	@param radius  Determines the kernel size, see Process>Filters>Show Circular Masks.
	 *				   Must not be negative. No checking is done for large values that would
	 *				   lead to excessive computing times.
	 *	@param filterType May be MEAN, MIN, MAX, VARIANCE, or MEDIAN.
	 */
	public void rank(ImageProcessor ip, double radius, int filterType) {
		rank(ip, radius, filterType, 0, 50f);
	}

	/** Filters an image by any method except 'despecle' (for 'despeckle', use 'median' and radius=1)
	 * @param ip The image subject to filtering
	 * @param radius The kernel radius
	 * @param filterType as defined above; DESPECKLE is not a valid type here; use median and
	 *		  a radius of 1.0 instead
	 * @param whichOutliers BRIGHT_OUTLIERS or DARK_OUTLIERS for 'outliers' filter
	 * @param threshold Threshold for 'outliers' filter
	 */
	public void rank(ImageProcessor ip, double radius, int filterType, int whichOutliers, float threshold) {
		Rectangle roi = ip.getRoi();
		ImageProcessor mask = ip.getMask();
		Rectangle roi1 = null;
		int[] lineRadii = makeLineRadii(radius);

		float minMaxOutliersSign = filterType==MIN ? -1f : 1f;
		if (filterType == OUTLIERS)		//sign is -1 for high outliers: compare number with minimum
			minMaxOutliersSign = (ip.isInvertedLut()==(whichOutliers==DARK_OUTLIERS)) ? -1f : 1f;

		boolean isImagePart = (roi.width1 ? 2*numThreads : 0);
		// 'cache' is the input buffer. Each line y in the image is mapped onto cache line y%cacheHeight
		final float[] cache = new float[cacheWidth*cacheHeight];
		highestYinCache = Math.max(roi.y-kHeight/2, 0) - 1; //this line+1 will be read into the cache first

		final int[] yForThread = new int[numThreads];		//threads announce here which line they currently process
		Arrays.fill(yForThread, -1);
		yForThread[numThreads-1] = roi.y-1;					//first thread started should begin at roi.y
		//IJ.log("going to filter lines "+roi.y+"-"+(roi.y+roi.height-1)+"; cacheHeight="+cacheHeight);
		final Thread[] threads = new Thread[numThreads-1];	//thread number 0 is this one, not in the array
		for (int t=numThreads-1; t>0; t--) {
			final int ti=t;
			final Thread thread = new Thread(
					new Runnable() {
						final public void run() {
							doFiltering(ip, lineRadii, cache, cacheWidth, cacheHeight,
									filterType, minMaxOutliersSign, threshold, colorChannel,
									yForThread, ti, aborted);
						}
					},
					"RankFilters-"+t);
			thread.setPriority(Thread.currentThread().getPriority());
			thread.start();
			threads[ti-1] = thread;
		}

		doFiltering(ip, lineRadii, cache, cacheWidth, cacheHeight,
				filterType, minMaxOutliersSign, threshold, colorChannel,
				yForThread, 0, aborted);
		for (final Thread thread : threads)
			try {
				if (thread != null) thread.join();
			} catch (InterruptedException e) {
				aborted[0] = true;
				Thread.currentThread().interrupt();	  //keep interrupted status (PlugInFilterRunner needs it)
			}
		showProgress(1.0, ip instanceof ColorProcessor);
		pass++;
	}

	// Filter a grayscale image or one channel of an RGB image using one thread
	//
	// Synchronization: unless a thread is waiting, we avoid the overhead of 'synchronized'
	// statements. That's because a thread waiting for another one should be rare.
	//
	// Data handling: The area needed for processing a line is written into the array 'cache'.
	// This is a stripe of sufficient width for all threads to have each thread processing one
	// line, and some extra space if one thread is finished to start the next line.
	// This array is padded at the edges of the image so that a surrounding with radius kRadius
	// for each pixel processed is within 'cache'. Out-of-image
	// pixels are set to the value of the nearest edge pixel. When adding a new line, the lines in
	// 'cache' are not shifted but rather the smaller array with the start and end pointers of the
	// kernel area is modified to point at the addresses for the next line.
	//
	// Algorithm: For mean and variance, except for very small radius, usually do not calculate the
	// sum over all pixels. This sum is calculated for the first pixel of every line only. For the
	// following pixels, add the new values and subtract those that are not in the sum any more.
	// For min/max, also first look at the new values, use their maximum if larger than the old
	// one. The look at the values not in the area any more; if it does not contain the old
	// maximum, leave the maximum unchanged. Otherwise, determine the maximum inside the area.
	// For outliers, calculate the median only if the pixel deviates by more than the threshold
	// from any pixel in the area. Therfore min or max is calculated; this is a much faster
	// operation than the median.
	private void doFiltering(ImageProcessor ip, int[] lineRadii, float[] cache, int cacheWidth, int cacheHeight,
							 int filterType, float minMaxOutliersSign, float threshold, int colorChannel,
							 int [] yForThread, int threadNumber, boolean[] aborted) {
		if (aborted[0] || Thread.currentThread().isInterrupted()) return;
		int width = ip.getWidth();
		int height = ip.getHeight();
		Rectangle roi = ip.getRoi();

		int kHeight = kHeight(lineRadii);
		int kRadius	 = kRadius(lineRadii);
		int kNPoints = kNPoints(lineRadii);

		int xmin = roi.x - kRadius;
		int xmax = roi.x + roi.width + kRadius;
		int[]cachePointers = makeCachePointers(lineRadii, cacheWidth);

		int padLeft = xmin<0 ? -xmin : 0;
		int padRight = xmax>width? xmax-width : 0;
		int xminInside = xmin>0 ? xmin : 0;
		int xmaxInside = xmax100) {
					lastTime = time;
					showProgress((y-roi.y)/(double)(roi.height), rgb);
					if (Thread.currentThread().isInterrupted() || (imp!= null && IJ.escapePressed())) {
						aborted[0] = true;
						synchronized(this) {notifyAll();}
						return;
					}
				}
			}

			for (int i=0; i1) {							// thread synchronization
				int slowestThreadY = arrayMinNonNegative(yForThread); // non-synchronized check to avoid overhead
				if (y - slowestThreadY + kHeight > cacheHeight) {	// we would overwrite data needed by another thread
					synchronized(this) {
						slowestThreadY = arrayMinNonNegative(yForThread); //recheck whether we have to wait
						if (y - slowestThreadY + kHeight > cacheHeight) {
							do {
								notifyAll();			// avoid deadlock: wake up others waiting
								threadWaiting = true;
								//IJ.log("Thread "+threadNumber+" waiting @y="+y+" slowest@y="+slowestThreadY);
								try {
									wait();
									if (aborted[0]) return;
								} catch (InterruptedException e) {
									aborted[0] = true;
									notifyAll();
									Thread.currentThread().interrupt(); //keep interrupted status (PlugInFilterRunner needs it)
									return;
								}
								slowestThreadY = arrayMinNonNegative(yForThread);
							} while (y - slowestThreadY + kHeight > cacheHeight);
						} //if
						threadWaiting = false;
					}
				}
			}

			if (numThreads==1) {															// R E A D
				int yStartReading = y==roi.y ? Math.max(roi.y-kHeight/2, 0) : y+kHeight/2;
				for (int yNew = yStartReading; yNew<=y+kHeight/2; yNew++) { //only 1 line except at start
					readLineToCacheOrPad(pixels, width, height, roi.y, xminInside, widthInside,
							cache, cacheWidth, cacheHeight, padLeft, padRight, colorChannel, kHeight, yNew);
				}
			} else {
				if (!copyingToCache || highestYinCache < y+kHeight/2) synchronized(cache) {
					copyingToCache = true;				// copy new line(s) into cache
					while (highestYinCache < arrayMinNonNegative(yForThread) - kHeight/2 + cacheHeight - 1) {
						int yNew = highestYinCache + 1;
						readLineToCacheOrPad(pixels, width, height, roi.y, xminInside, widthInside,
								cache, cacheWidth, cacheHeight, padLeft, padRight, colorChannel, kHeight, yNew);
						highestYinCache = yNew;
					}
					copyingToCache = false;
				}
			}

			int cacheLineP = cacheWidth * (y % cacheHeight) + kRadius;	//points to pixel (roi.x, y)
			filterLine(values, width, cache, cachePointers, kNPoints, cacheLineP, roi, y,	// F I L T E R
					sums, medianBuf1, medianBuf2, minMaxOutliersSign, maxValue, isFloat, filterType,
					smallKernel, sumFilter, minOrMax, minOrMaxOrOutliers);
			if (!isFloat)		//Float images: data are written already during 'filterLine'
				writeLineToPixels(values, pixels, roi.x+y*width, roi.width, colorChannel);	// W R I T E
			//IJ.log("thread "+threadNumber+" @y="+y+" line done");
		} // while (!aborted[0]); loop over y (lines)
	}

	private int arrayMax(int[] array) {
		int max = Integer.MIN_VALUE;
		for (int i=0; i max) max = array[i];
		return max;
	}

	//returns the minimum of the array, but not less than 0
	private int arrayMinNonNegative(int[] array) {
		int min = Integer.MAX_VALUE;
		for (int i=0; i= max) { //compare with previous maximum 'max'
						max = newPointsMax;
					} else {
						float removedPointsMax = getSideMax(cache, x, cachePointers, false, minMaxOutliersSign);
						if (removedPointsMax >= max)
							max = getAreaMax(cache, x, cachePointers, 1, newPointsMax, minMaxOutliersSign);
					}
					if (minOrMax) {
						values[valuesP] = max*minMaxOutliersSign;
						continue;
					}
				} else if (sumFilter) {
					addSideSums(cache, x, cachePointers, sums);
					if (Double.isNaN(sums[0])) //avoid perpetuating NaNs into remaining line
						fullCalculation = true;
				}
			}
			if (sumFilter) {
				if (filterType == MEAN)
					values[valuesP] = (float)(sums[0]/kNPoints);
				else	{// Variance: sum of squares - square of sums
					float value = (float)((sums[1] - sums[0]*sums[0]/kNPoints)/kNPoints);
					if (value>maxValue) value = maxValue;
					values[valuesP] = value;
				}
			} else if (filterType == MEDIAN) {
				median = getMedian(cache, x, cachePointers, medianBuf1, medianBuf2, kNPoints, median);
				values[valuesP] = median;
			} else if (filterType == OUTLIERS) {
				float v = cache[cacheLineP+x];
				if (v*minMaxOutliersSign+threshold < max) {		//for low outliers: median can't be higher than max (minMaxOutliersSign is +1)
					median = getMedian(cache, x, cachePointers, medianBuf1, medianBuf2, kNPoints, median);
					if (v*minMaxOutliersSign+threshold < median*minMaxOutliersSign)
						v = median;					//beyond threshold (below if minMaxOutliersSign=+1), replace outlier by median
				}
				values[valuesP] = v;
			} else if (filterType == REMOVE_NAN) {	 //float only; then 'values' is pixels array
				if (Float.isNaN(values[valuesP]))
					values[valuesP] = getNaNAwareMedian(cache, x, cachePointers, medianBuf1, medianBuf2, kNPoints, median);
				else
					median = values[valuesP];	//initial guess for the next point
			}
		} // for x
	}

	/** Read a line into the cache (including padding in x).
	 *	If y>=height, instead of reading new data, it duplicates the line y=height-1.
	 *	If y==0, it also creates the data for y<0, as far as necessary, thus filling the cache with
	 *	more than one line (padding by duplicating the y=0 row).
	 */
	private static void readLineToCacheOrPad(Object pixels, int width, int height, int roiY, int xminInside, int widthInside,
											 float[]cache, int cacheWidth, int cacheHeight, int padLeft, int padRight, int colorChannel,
											 int kHeight, int y) {
		int lineInCache = y%cacheHeight;
		if (y < height) {
			readLineToCache(pixels, y*width, xminInside, widthInside,
					cache, lineInCache*cacheWidth, padLeft, padRight, colorChannel);
			if (y==0) for (int prevY = roiY-kHeight/2; prevY<0; prevY++) {	//for y<0, pad with y=0 border pixels
				int prevLineInCache = cacheHeight+prevY;
				System.arraycopy(cache, 0, cache, prevLineInCache*cacheWidth, cacheWidth);
			}
		} else
			System.arraycopy(cache, cacheWidth*((height-1)%cacheHeight), cache, lineInCache*cacheWidth, cacheWidth);
	}

	/** Read a line into the cache (includes conversion to flaot). Pad with edge pixels in x if necessary */
	private static void readLineToCache(Object pixels, int pixelLineP, int xminInside, int widthInside,
										float[] cache, int cacheLineP, int padLeft, int padRight, int colorChannel) {
		if (pixels instanceof byte[]) {
			byte[] bPixels = (byte[])pixels;
			for (int pp=pixelLineP+xminInside, cp=cacheLineP+padLeft; pp>shift;
		}
		for (int cp=cacheLineP; cp guess) {
					aboveBuf[nAbove] = v;
					nAbove++;
				}
				else if (v < guess) {
					belowBuf[nBelow] = v;
					nBelow++;
				}
			}
		}
		int half = kNPoints/2;
		if (nAbove>half)
			return findNthLowestNumber(aboveBuf, nAbove, nAbove-half-1);
		else if (nBelow>half)
			return findNthLowestNumber(belowBuf, nBelow, half);
		else
			return guess;
	}

	/** Get median of values within kernel-sized neighborhood.
	 *	NaN data values are ignored; the output is NaN only if there are only NaN values in the
	 *	kernel-sized neighborhood */
	private static float getNaNAwareMedian(float[] cache, int xCache0, int[] kernel,
										   float[] aboveBuf, float[]belowBuf, int kNPoints, float guess) {
		int nAbove = 0, nBelow = 0;
		for (int kk=0; kk guess) {
					aboveBuf[nAbove] = v;
					nAbove++;
				}
				else if (v < guess) {
					belowBuf[nBelow] = v;
					nBelow++;
				}
			}
		}
		if (kNPoints == 0) return Float.NaN;	//only NaN data in the neighborhood?
		int half = kNPoints/2;
		if (nAbove>half)
			return findNthLowestNumber(aboveBuf, nAbove, nAbove-half-1);
		else if (nBelow>half)
			return findNthLowestNumber(belowBuf, nBelow, half);
		else
			return guess;
	}

	/** Find the n-th lowest number in part of an array
	 *	@param buf The input array. Only values 0 ... bufLength are read. buf will be modified.
	 *	@param bufLength Number of values in buf that should be read
	 *	@param n which value should be found; n=0 for the lowest, n=bufLength-1 for the highest
	 *	@return the value */
	public final static float findNthLowestNumber(float[] buf, int bufLength, int n) {
		// Hoare's find, algorithm, based on http://www.geocities.com/zabrodskyvlada/3alg.html
		// Contributed by Heinz Klar
		int i,j;
		int l=0;
		int m=bufLength-1;
		float med=buf[n];
		float dum ;

		while (l=n) && (i<=n)) ;
			if (j 0)
				System.arraycopy(snapshot, pL, pixels, pL, leftWidth);
			if (rightWidth > 0)
				System.arraycopy(snapshot, pR, pixels, pR, rightWidth);
		}
		for (int y=roi.y+roi.height, p = roi1.x+y*width; y=1.5 && radius<1.75) //this code creates the same sizes as the previous RankFilters
			radius = 1.75;
		else if (radius>=2.5 && radius<2.85)
			radius = 2.85;
		int r2 = (int) (radius*radius) + 1;
		int kRadius = (int)(Math.sqrt(r2+1e-10));
		int kHeight = 2*kRadius + 1;
		int[] kernel = new int[2*kHeight + 2];
		kernel[2*kRadius]	= -kRadius;
		kernel[2*kRadius+1] =  kRadius;
		int nPoints = 2*kRadius+1;
		for (int y=1; y<=kRadius; y++) {		//lines above and below center together
			int dx = (int)(Math.sqrt(r2-y*y+1e-10));
			kernel[2*(kRadius-y)]	= -dx;
			kernel[2*(kRadius-y)+1] =  dx;
			kernel[2*(kRadius+y)]	= -dx;
			kernel[2*(kRadius+y)+1] =  dx;
			nPoints += 4*dx+2;	//2*dx+1 for each line, above&below
		}
		kernel[kernel.length-2] = nPoints;
		kernel[kernel.length-1] = kRadius;
		//for (int i=0; i




© 2015 - 2024 Weber Informatics LLC | Privacy Policy