All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.actelion.research.orbit.imageAnalysis.features.TissueFeaturesCircular Maven / Gradle / Ivy

Go to download

Orbit, a versatile image analysis software for biological image-based quantification

There is a newer version: 3.15
Show newest version
/*
 *     Orbit, a versatile image analysis software for biological image-based quantification.
 *     Copyright (C) 2009 - 2018 Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland.
 *
 *     This program is free software: you can redistribute it and/or modify
 *     it under the terms of the GNU General Public License as published by
 *     the Free Software Foundation, either version 3 of the License, or
 *     (at your option) any later version.
 *
 *     This program is distributed in the hope that it will be useful,
 *     but WITHOUT ANY WARRANTY; without even the implied warranty of
 *     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *     GNU General Public License for more details.
 *
 *     You should have received a copy of the GNU General Public License
 *     along with this program.  If not, see .
 *
 */

package com.actelion.research.orbit.imageAnalysis.features;

import com.actelion.research.orbit.exceptions.OrbitImageServletException;
import com.actelion.research.orbit.imageAnalysis.models.FeatureDescription;
import com.actelion.research.orbit.imageAnalysis.utils.TiledImagePainter;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.awt.*;
import java.awt.image.Raster;
import java.util.HashSet;
import java.util.Random;
import java.util.concurrent.ConcurrentHashMap;

/**
 * Attention: This class is not thread-safe!!!
* Channel usage (useRed,useGreen,useBlue) is treated in feats[] assignment loop - all samples are calculated! *

* This TissueFeatures computes the features in a circular region, not inside a squared sliding window as the original * TissueFeatures class does. */ public class TissueFeaturesCircular extends TissueFeatures { private final static Logger logger = LoggerFactory.getLogger(TissueFeaturesCircular.class); private int samples = 3; private int windowSize = 4; private int[] buf = null; private TiledImagePainter bimg = null; //private int[] p = new int[4]; // buffer of one pixel up to 4 samples private FeatureDescription featureDescription = null; private final static int sampleSize = 500; public final static ConcurrentHashMap> validPointsCnt = new ConcurrentHashMap<>(); private final Random random = new Random(); /** * bimg can be null (then raster r in buildFeatures cannot be null) */ public TissueFeaturesCircular(final FeatureDescription featureDescription, final TiledImagePainter bimg) { this.samples = featureDescription.getSampleSize(); this.windowSize = featureDescription.getWindowSize(); this.bimg = bimg; buf = new int[(windowSize * 2 + 1) * (windowSize * 2 + 1) * samples]; } /** * Initializes a double array of a sufficient size given the feature description. * * @return */ public double[] prepareDoubleArray() { prepareValidPoints(windowSize); return new double[(validPointsCnt.get(windowSize).size()) * samples + 1]; // +1 for contextclassification??? } public double[] buildFeatures(final Raster r, final int x, final int y, final double classVal) throws OrbitImageServletException { prepareValidPoints(windowSize); if (r != null) // faster if raster is pre-assigned (e.g. the shape fits into memory) { buf = r.getPixels(x - windowSize, y - windowSize, (windowSize * 2) + 1, (windowSize * 2) + 1, buf); //p = r.getPixel(x, y, p); // mid-pixel } else { // slower, but works for very large shapes Raster r2 = bimg.getData(new Rectangle(x - windowSize, y - windowSize, (windowSize * 2) + 1, (windowSize * 2) + 1), featureDescription); if (r2 == null) System.out.println("r2 is null!!"); buf = r2.getPixels(x - windowSize, y - windowSize, (windowSize * 2) + 1, (windowSize * 2) + 1, buf); //p = r2.getPixel(x, y, p); } double[] feats = prepareDoubleArray(); int featsCnt = 0; HashSet pHS = validPointsCnt.get(windowSize); for (int i = 0; i < (buf.length) / samples; i++) { // buf.len-1 ? if (pHS.contains(i)) { for (int s = 0; s < samples; s++) { feats[featsCnt++] = buf[i * samples + s]; // /255 for normalization } } } feats[feats.length - 1] = classVal; //logger.trace(Arrays.toString(feats)); return feats; } public void prepareValidPoints(int windowSize) { if (!validPointsCnt.containsKey(windowSize)) { double mult = 5; double a = ((windowSize * windowSize) / (Math.PI * windowSize * windowSize)); double p = (sampleSize / (a * (windowSize * windowSize))) * 2.2; // 5=2.2 / 7=3.6 HashSet pHS = new HashSet<>(sampleSize); int cnt = 0; int pos = 0; for (int y = -windowSize; y <= windowSize; y++) for (int x = -windowSize; x <= windowSize; x++) { double dist = Math.sqrt(x * x + y * y); if (dist <= windowSize) { double f = 1d - (dist / windowSize); if ((x == 0 && y == 0) || ((random.nextDouble() < Math.pow(f, mult)) && (random.nextDouble() < p))) { // xHS.add(x + windowSize); // yHS.add(y + windowSize); pHS.add(pos); //System.out.println("pos: "+pos); cnt++; } } pos++; } logger.info(cnt + " valid points created"); validPointsCnt.put(windowSize, pHS); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy