Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2015 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License,
* version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
package io.netty.channel.epoll;
import io.netty.buffer.ByteBuf;
import io.netty.buffer.ByteBufAllocator;
import io.netty.buffer.CompositeByteBuf;
import io.netty.channel.Channel;
import io.netty.channel.ChannelConfig;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelFutureListener;
import io.netty.channel.ChannelOutboundBuffer;
import io.netty.channel.ChannelPipeline;
import io.netty.channel.ChannelPromise;
import io.netty.channel.ConnectTimeoutException;
import io.netty.channel.DefaultFileRegion;
import io.netty.channel.EventLoop;
import io.netty.channel.RecvByteBufAllocator;
import io.netty.channel.socket.DuplexChannel;
import io.netty.channel.unix.FileDescriptor;
import io.netty.channel.unix.Socket;
import io.netty.util.internal.EmptyArrays;
import io.netty.util.internal.MpscLinkedQueueNode;
import io.netty.util.internal.OneTimeTask;
import io.netty.util.internal.PlatformDependent;
import io.netty.util.internal.StringUtil;
import io.netty.util.internal.logging.InternalLogger;
import io.netty.util.internal.logging.InternalLoggerFactory;
import java.io.IOException;
import java.net.SocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.ClosedChannelException;
import java.util.Queue;
import java.util.concurrent.Executor;
import java.util.concurrent.ScheduledFuture;
import java.util.concurrent.TimeUnit;
import static io.netty.channel.unix.FileDescriptor.pipe;
import static io.netty.util.internal.ObjectUtil.checkNotNull;
public abstract class AbstractEpollStreamChannel extends AbstractEpollChannel implements DuplexChannel {
private static final String EXPECTED_TYPES =
" (expected: " + StringUtil.simpleClassName(ByteBuf.class) + ", " +
StringUtil.simpleClassName(DefaultFileRegion.class) + ')';
private static final InternalLogger logger = InternalLoggerFactory.getInstance(AbstractEpollStreamChannel.class);
static final ClosedChannelException CLOSED_CHANNEL_EXCEPTION = new ClosedChannelException();
static {
CLOSED_CHANNEL_EXCEPTION.setStackTrace(EmptyArrays.EMPTY_STACK_TRACE);
}
/**
* The future of the current connection attempt. If not null, subsequent
* connection attempts will fail.
*/
private ChannelPromise connectPromise;
private ScheduledFuture> connectTimeoutFuture;
private SocketAddress requestedRemoteAddress;
private Queue spliceQueue;
// Lazy init these if we need to splice(...)
private FileDescriptor pipeIn;
private FileDescriptor pipeOut;
/**
* @deprecated Use {@link #AbstractEpollStreamChannel(Channel, Socket)}.
*/
@Deprecated
protected AbstractEpollStreamChannel(Channel parent, int fd) {
this(parent, new Socket(fd));
}
/**
* @deprecated Use {@link #AbstractEpollStreamChannel(Socket, boolean)}.
*/
@Deprecated
protected AbstractEpollStreamChannel(int fd) {
this(new Socket(fd));
}
/**
* @deprecated Use {@link #AbstractEpollStreamChannel(Socket, boolean)}.
*/
@Deprecated
protected AbstractEpollStreamChannel(FileDescriptor fd) {
this(new Socket(fd.intValue()));
}
/**
* @deprecated Use {@link #AbstractEpollStreamChannel(Socket, boolean)}.
*/
@Deprecated
protected AbstractEpollStreamChannel(Socket fd) {
this(fd, isSoErrorZero(fd));
}
protected AbstractEpollStreamChannel(Channel parent, Socket fd) {
super(parent, fd, Native.EPOLLIN, true);
// Add EPOLLRDHUP so we are notified once the remote peer close the connection.
flags |= Native.EPOLLRDHUP;
}
protected AbstractEpollStreamChannel(Socket fd, boolean active) {
super(null, fd, Native.EPOLLIN, active);
// Add EPOLLRDHUP so we are notified once the remote peer close the connection.
flags |= Native.EPOLLRDHUP;
}
@Override
protected AbstractEpollUnsafe newUnsafe() {
return new EpollStreamUnsafe();
}
/**
* Splice from this {@link AbstractEpollStreamChannel} to another {@link AbstractEpollStreamChannel}.
* The {@code len} is the number of bytes to splice. If using {@link Integer#MAX_VALUE} it will
* splice until the {@link ChannelFuture} was canceled or it was failed.
*
* Please note:
*
*
both channels need to be registered to the same {@link EventLoop}, otherwise an
* {@link IllegalArgumentException} is thrown.
*
{@link EpollChannelConfig#getEpollMode()} must be {@link EpollMode#LEVEL_TRIGGERED} for this and the
* target {@link AbstractEpollStreamChannel}
*
*
*/
public final ChannelFuture spliceTo(final AbstractEpollStreamChannel ch, final int len) {
return spliceTo(ch, len, newPromise());
}
/**
* Splice from this {@link AbstractEpollStreamChannel} to another {@link AbstractEpollStreamChannel}.
* The {@code len} is the number of bytes to splice. If using {@link Integer#MAX_VALUE} it will
* splice until the {@link ChannelFuture} was canceled or it was failed.
*
* Please note:
*
*
both channels need to be registered to the same {@link EventLoop}, otherwise an
* {@link IllegalArgumentException} is thrown.
*
{@link EpollChannelConfig#getEpollMode()} must be {@link EpollMode#LEVEL_TRIGGERED} for this and the
* target {@link AbstractEpollStreamChannel}
*
*
*/
public final ChannelFuture spliceTo(final AbstractEpollStreamChannel ch, final int len,
final ChannelPromise promise) {
if (ch.eventLoop() != eventLoop()) {
throw new IllegalArgumentException("EventLoops are not the same.");
}
if (len < 0) {
throw new IllegalArgumentException("len: " + len + " (expected: >= 0)");
}
if (ch.config().getEpollMode() != EpollMode.LEVEL_TRIGGERED
|| config().getEpollMode() != EpollMode.LEVEL_TRIGGERED) {
throw new IllegalStateException("spliceTo() supported only when using " + EpollMode.LEVEL_TRIGGERED);
}
checkNotNull(promise, "promise");
if (!isOpen()) {
promise.tryFailure(CLOSED_CHANNEL_EXCEPTION);
} else {
addToSpliceQueue(new SpliceInChannelTask(ch, len, promise));
failSpliceIfClosed(promise);
}
return promise;
}
/**
* Splice from this {@link AbstractEpollStreamChannel} to another {@link FileDescriptor}.
* The {@code offset} is the offset for the {@link FileDescriptor} and {@code len} is the
* number of bytes to splice. If using {@link Integer#MAX_VALUE} it will splice until the
* {@link ChannelFuture} was canceled or it was failed.
*
* Please note:
*
*
{@link EpollChannelConfig#getEpollMode()} must be {@link EpollMode#LEVEL_TRIGGERED} for this
* {@link AbstractEpollStreamChannel}
*
the {@link FileDescriptor} will not be closed after the {@link ChannelFuture} is notified
*
this channel must be registered to an event loop or {@link IllegalStateException} will be thrown.
*
*/
public final ChannelFuture spliceTo(final FileDescriptor ch, final int offset, final int len) {
return spliceTo(ch, offset, len, newPromise());
}
/**
* Splice from this {@link AbstractEpollStreamChannel} to another {@link FileDescriptor}.
* The {@code offset} is the offset for the {@link FileDescriptor} and {@code len} is the
* number of bytes to splice. If using {@link Integer#MAX_VALUE} it will splice until the
* {@link ChannelFuture} was canceled or it was failed.
*
* Please note:
*
*
{@link EpollChannelConfig#getEpollMode()} must be {@link EpollMode#LEVEL_TRIGGERED} for this
* {@link AbstractEpollStreamChannel}
*
the {@link FileDescriptor} will not be closed after the {@link ChannelPromise} is notified
*
this channel must be registered to an event loop or {@link IllegalStateException} will be thrown.
*
*/
public final ChannelFuture spliceTo(final FileDescriptor ch, final int offset, final int len,
final ChannelPromise promise) {
if (len < 0) {
throw new IllegalArgumentException("len: " + len + " (expected: >= 0)");
}
if (offset < 0) {
throw new IllegalArgumentException("offset must be >= 0 but was " + offset);
}
if (config().getEpollMode() != EpollMode.LEVEL_TRIGGERED) {
throw new IllegalStateException("spliceTo() supported only when using " + EpollMode.LEVEL_TRIGGERED);
}
checkNotNull(promise, "promise");
if (!isOpen()) {
promise.tryFailure(CLOSED_CHANNEL_EXCEPTION);
} else {
addToSpliceQueue(new SpliceFdTask(ch, offset, len, promise));
failSpliceIfClosed(promise);
}
return promise;
}
private void failSpliceIfClosed(ChannelPromise promise) {
if (!isOpen()) {
// Seems like the Channel was closed in the meantime try to fail the promise to prevent any
// cases where a future may not be notified otherwise.
if (promise.tryFailure(CLOSED_CHANNEL_EXCEPTION)) {
eventLoop().execute(new OneTimeTask() {
@Override
public void run() {
// Call this via the EventLoop as it is a MPSC queue.
clearSpliceQueue();
}
});
}
}
}
/**
* Write bytes form the given {@link ByteBuf} to the underlying {@link java.nio.channels.Channel}.
* @param buf the {@link ByteBuf} from which the bytes should be written
*/
private boolean writeBytes(ChannelOutboundBuffer in, ByteBuf buf, int writeSpinCount) throws Exception {
int readableBytes = buf.readableBytes();
if (readableBytes == 0) {
in.remove();
return true;
}
if (buf.hasMemoryAddress() || buf.nioBufferCount() == 1) {
int writtenBytes = doWriteBytes(buf, writeSpinCount);
in.removeBytes(writtenBytes);
return writtenBytes == readableBytes;
} else {
ByteBuffer[] nioBuffers = buf.nioBuffers();
return writeBytesMultiple(in, nioBuffers, nioBuffers.length, readableBytes, writeSpinCount);
}
}
private boolean writeBytesMultiple(
ChannelOutboundBuffer in, IovArray array, int writeSpinCount) throws IOException {
long expectedWrittenBytes = array.size();
final long initialExpectedWrittenBytes = expectedWrittenBytes;
int cnt = array.count();
assert expectedWrittenBytes != 0;
assert cnt != 0;
boolean done = false;
int offset = 0;
int end = offset + cnt;
for (int i = writeSpinCount - 1; i >= 0; i--) {
long localWrittenBytes = fd().writevAddresses(array.memoryAddress(offset), cnt);
if (localWrittenBytes == 0) {
break;
}
expectedWrittenBytes -= localWrittenBytes;
if (expectedWrittenBytes == 0) {
// Written everything, just break out here (fast-path)
done = true;
break;
}
do {
long bytes = array.processWritten(offset, localWrittenBytes);
if (bytes == -1) {
// incomplete write
break;
} else {
offset++;
cnt--;
localWrittenBytes -= bytes;
}
} while (offset < end && localWrittenBytes > 0);
}
in.removeBytes(initialExpectedWrittenBytes - expectedWrittenBytes);
return done;
}
private boolean writeBytesMultiple(
ChannelOutboundBuffer in, ByteBuffer[] nioBuffers,
int nioBufferCnt, long expectedWrittenBytes, int writeSpinCount) throws IOException {
assert expectedWrittenBytes != 0;
final long initialExpectedWrittenBytes = expectedWrittenBytes;
boolean done = false;
int offset = 0;
int end = offset + nioBufferCnt;
for (int i = writeSpinCount - 1; i >= 0; i--) {
long localWrittenBytes = fd().writev(nioBuffers, offset, nioBufferCnt);
if (localWrittenBytes == 0) {
break;
}
expectedWrittenBytes -= localWrittenBytes;
if (expectedWrittenBytes == 0) {
// Written everything, just break out here (fast-path)
done = true;
break;
}
do {
ByteBuffer buffer = nioBuffers[offset];
int pos = buffer.position();
int bytes = buffer.limit() - pos;
if (bytes > localWrittenBytes) {
buffer.position(pos + (int) localWrittenBytes);
// incomplete write
break;
} else {
offset++;
nioBufferCnt--;
localWrittenBytes -= bytes;
}
} while (offset < end && localWrittenBytes > 0);
}
in.removeBytes(initialExpectedWrittenBytes - expectedWrittenBytes);
return done;
}
/**
* Write a {@link DefaultFileRegion}
*
* @param region the {@link DefaultFileRegion} from which the bytes should be written
* @return amount the amount of written bytes
*/
private boolean writeFileRegion(
ChannelOutboundBuffer in, DefaultFileRegion region, int writeSpinCount) throws Exception {
final long regionCount = region.count();
if (region.transfered() >= regionCount) {
in.remove();
return true;
}
final long baseOffset = region.position();
boolean done = false;
long flushedAmount = 0;
for (int i = writeSpinCount - 1; i >= 0; i--) {
final long offset = region.transfered();
final long localFlushedAmount =
Native.sendfile(fd().intValue(), region, baseOffset, offset, regionCount - offset);
if (localFlushedAmount == 0) {
break;
}
flushedAmount += localFlushedAmount;
if (region.transfered() >= regionCount) {
done = true;
break;
}
}
if (flushedAmount > 0) {
in.progress(flushedAmount);
}
if (done) {
in.remove();
}
return done;
}
@Override
protected void doWrite(ChannelOutboundBuffer in) throws Exception {
int writeSpinCount = config().getWriteSpinCount();
for (;;) {
final int msgCount = in.size();
if (msgCount == 0) {
// Wrote all messages.
clearFlag(Native.EPOLLOUT);
// Return here so we not set the EPOLLOUT flag.
return;
}
// Do gathering write if the outbounf buffer entries start with more than one ByteBuf.
if (msgCount > 1 && in.current() instanceof ByteBuf) {
if (!doWriteMultiple(in, writeSpinCount)) {
// Break the loop and so set EPOLLOUT flag.
break;
}
// We do not break the loop here even if the outbound buffer was flushed completely,
// because a user might have triggered another write and flush when we notify his or her
// listeners.
} else { // msgCount == 1
if (!doWriteSingle(in, writeSpinCount)) {
// Break the loop and so set EPOLLOUT flag.
break;
}
}
}
// Underlying descriptor can not accept all data currently, so set the EPOLLOUT flag to be woken up
// when it can accept more data.
setFlag(Native.EPOLLOUT);
}
protected boolean doWriteSingle(ChannelOutboundBuffer in, int writeSpinCount) throws Exception {
// The outbound buffer contains only one message or it contains a file region.
Object msg = in.current();
if (msg instanceof ByteBuf) {
ByteBuf buf = (ByteBuf) msg;
if (!writeBytes(in, buf, writeSpinCount)) {
// was not able to write everything so break here we will get notified later again once
// the network stack can handle more writes.
return false;
}
} else if (msg instanceof DefaultFileRegion) {
DefaultFileRegion region = (DefaultFileRegion) msg;
if (!writeFileRegion(in, region, writeSpinCount)) {
// was not able to write everything so break here we will get notified later again once
// the network stack can handle more writes.
return false;
}
} else if (msg instanceof SpliceOutTask) {
if (!((SpliceOutTask) msg).spliceOut()) {
return false;
}
in.remove();
} else {
// Should never reach here.
throw new Error();
}
return true;
}
private boolean doWriteMultiple(ChannelOutboundBuffer in, int writeSpinCount) throws Exception {
if (PlatformDependent.hasUnsafe()) {
// this means we can cast to IovArray and write the IovArray directly.
IovArray array = ((EpollEventLoop) eventLoop()).cleanArray();
in.forEachFlushedMessage(array);
int cnt = array.count();
if (cnt >= 1) {
// TODO: Handle the case where cnt == 1 specially.
if (!writeBytesMultiple(in, array, writeSpinCount)) {
// was not able to write everything so break here we will get notified later again once
// the network stack can handle more writes.
return false;
}
} else { // cnt == 0, which means the outbound buffer contained empty buffers only.
in.removeBytes(0);
}
} else {
ByteBuffer[] buffers = in.nioBuffers();
int cnt = in.nioBufferCount();
if (cnt >= 1) {
// TODO: Handle the case where cnt == 1 specially.
if (!writeBytesMultiple(in, buffers, cnt, in.nioBufferSize(), writeSpinCount)) {
// was not able to write everything so break here we will get notified later again once
// the network stack can handle more writes.
return false;
}
} else { // cnt == 0, which means the outbound buffer contained empty buffers only.
in.removeBytes(0);
}
}
return true;
}
@Override
protected Object filterOutboundMessage(Object msg) {
if (msg instanceof ByteBuf) {
ByteBuf buf = (ByteBuf) msg;
if (!buf.hasMemoryAddress() && (PlatformDependent.hasUnsafe() || !buf.isDirect())) {
if (buf instanceof CompositeByteBuf) {
// Special handling of CompositeByteBuf to reduce memory copies if some of the Components
// in the CompositeByteBuf are backed by a memoryAddress.
CompositeByteBuf comp = (CompositeByteBuf) buf;
if (!comp.isDirect() || comp.nioBufferCount() > Native.IOV_MAX) {
// more then 1024 buffers for gathering writes so just do a memory copy.
buf = newDirectBuffer(buf);
assert buf.hasMemoryAddress();
}
} else {
// We can only handle buffers with memory address so we need to copy if a non direct is
// passed to write.
buf = newDirectBuffer(buf);
assert buf.hasMemoryAddress();
}
}
return buf;
}
if (msg instanceof DefaultFileRegion || msg instanceof SpliceOutTask) {
return msg;
}
throw new UnsupportedOperationException(
"unsupported message type: " + StringUtil.simpleClassName(msg) + EXPECTED_TYPES);
}
protected void shutdownOutput0(final ChannelPromise promise) {
try {
fd().shutdown(false, true);
promise.setSuccess();
} catch (Throwable cause) {
promise.setFailure(cause);
}
}
@Override
public boolean isInputShutdown() {
return fd().isInputShutdown();
}
@Override
public boolean isOutputShutdown() {
return fd().isOutputShutdown();
}
@Override
public ChannelFuture shutdownOutput() {
return shutdownOutput(newPromise());
}
@Override
public ChannelFuture shutdownOutput(final ChannelPromise promise) {
Executor closeExecutor = ((EpollStreamUnsafe) unsafe()).prepareToClose();
if (closeExecutor != null) {
closeExecutor.execute(new OneTimeTask() {
@Override
public void run() {
shutdownOutput0(promise);
}
});
} else {
EventLoop loop = eventLoop();
if (loop.inEventLoop()) {
shutdownOutput0(promise);
} else {
loop.execute(new OneTimeTask() {
@Override
public void run() {
shutdownOutput0(promise);
}
});
}
}
return promise;
}
@Override
protected void doClose() throws Exception {
try {
ChannelPromise promise = connectPromise;
if (promise != null) {
// Use tryFailure() instead of setFailure() to avoid the race against cancel().
promise.tryFailure(CLOSED_CHANNEL_EXCEPTION);
connectPromise = null;
}
ScheduledFuture> future = connectTimeoutFuture;
if (future != null) {
future.cancel(false);
connectTimeoutFuture = null;
}
// Calling super.doClose() first so splceTo(...) will fail on next call.
super.doClose();
} finally {
safeClosePipe(pipeIn);
safeClosePipe(pipeOut);
clearSpliceQueue();
}
}
private void clearSpliceQueue() {
if (spliceQueue == null) {
return;
}
for (;;) {
SpliceInTask task = spliceQueue.poll();
if (task == null) {
break;
}
task.promise.tryFailure(CLOSED_CHANNEL_EXCEPTION);
}
}
/**
* Connect to the remote peer
*/
protected boolean doConnect(SocketAddress remoteAddress, SocketAddress localAddress) throws Exception {
if (localAddress != null) {
fd().bind(localAddress);
}
boolean success = false;
try {
boolean connected = fd().connect(remoteAddress);
if (!connected) {
setFlag(Native.EPOLLOUT);
}
success = true;
return connected;
} finally {
if (!success) {
doClose();
}
}
}
private static void safeClosePipe(FileDescriptor fd) {
if (fd != null) {
try {
fd.close();
} catch (IOException e) {
if (logger.isWarnEnabled()) {
logger.warn("Error while closing a pipe", e);
}
}
}
}
class EpollStreamUnsafe extends AbstractEpollUnsafe {
private RecvByteBufAllocator.Handle allocHandle;
// Overridden here just to be able to access this method from AbstractEpollStreamChannel
@Override
protected Executor prepareToClose() {
return super.prepareToClose();
}
private boolean handleReadException(ChannelPipeline pipeline, ByteBuf byteBuf, Throwable cause, boolean close) {
if (byteBuf != null) {
if (byteBuf.isReadable()) {
readPending = false;
pipeline.fireChannelRead(byteBuf);
} else {
byteBuf.release();
}
}
pipeline.fireChannelReadComplete();
pipeline.fireExceptionCaught(cause);
if (close || cause instanceof IOException) {
shutdownInput();
return true;
}
return false;
}
@Override
public void connect(
final SocketAddress remoteAddress, final SocketAddress localAddress, final ChannelPromise promise) {
if (!promise.setUncancellable() || !ensureOpen(promise)) {
return;
}
try {
if (connectPromise != null) {
throw new IllegalStateException("connection attempt already made");
}
boolean wasActive = isActive();
if (doConnect(remoteAddress, localAddress)) {
fulfillConnectPromise(promise, wasActive);
} else {
connectPromise = promise;
requestedRemoteAddress = remoteAddress;
// Schedule connect timeout.
int connectTimeoutMillis = config().getConnectTimeoutMillis();
if (connectTimeoutMillis > 0) {
connectTimeoutFuture = eventLoop().schedule(new OneTimeTask() {
@Override
public void run() {
ChannelPromise connectPromise = AbstractEpollStreamChannel.this.connectPromise;
ConnectTimeoutException cause =
new ConnectTimeoutException("connection timed out: " + remoteAddress);
if (connectPromise != null && connectPromise.tryFailure(cause)) {
close(voidPromise());
}
}
}, connectTimeoutMillis, TimeUnit.MILLISECONDS);
}
promise.addListener(new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture future) throws Exception {
if (future.isCancelled()) {
if (connectTimeoutFuture != null) {
connectTimeoutFuture.cancel(false);
}
connectPromise = null;
close(voidPromise());
}
}
});
}
} catch (Throwable t) {
closeIfClosed();
promise.tryFailure(annotateConnectException(t, remoteAddress));
}
}
private void fulfillConnectPromise(ChannelPromise promise, boolean wasActive) {
if (promise == null) {
// Closed via cancellation and the promise has been notified already.
return;
}
active = true;
// trySuccess() will return false if a user cancelled the connection attempt.
boolean promiseSet = promise.trySuccess();
// Regardless if the connection attempt was cancelled, channelActive() event should be triggered,
// because what happened is what happened.
if (!wasActive && isActive()) {
pipeline().fireChannelActive();
}
// If a user cancelled the connection attempt, close the channel, which is followed by channelInactive().
if (!promiseSet) {
close(voidPromise());
}
}
private void fulfillConnectPromise(ChannelPromise promise, Throwable cause) {
if (promise == null) {
// Closed via cancellation and the promise has been notified already.
return;
}
// Use tryFailure() instead of setFailure() to avoid the race against cancel().
promise.tryFailure(cause);
closeIfClosed();
}
private void finishConnect() {
// Note this method is invoked by the event loop only if the connection attempt was
// neither cancelled nor timed out.
assert eventLoop().inEventLoop();
boolean connectStillInProgress = false;
try {
boolean wasActive = isActive();
if (!doFinishConnect()) {
connectStillInProgress = true;
return;
}
fulfillConnectPromise(connectPromise, wasActive);
} catch (Throwable t) {
fulfillConnectPromise(connectPromise, annotateConnectException(t, requestedRemoteAddress));
} finally {
if (!connectStillInProgress) {
// Check for null as the connectTimeoutFuture is only created if a connectTimeoutMillis > 0 is used
// See https://github.com/netty/netty/issues/1770
if (connectTimeoutFuture != null) {
connectTimeoutFuture.cancel(false);
}
connectPromise = null;
}
}
}
@Override
void epollOutReady() {
if (connectPromise != null) {
// pending connect which is now complete so handle it.
finishConnect();
} else {
super.epollOutReady();
}
}
/**
* Finish the connect
*/
boolean doFinishConnect() throws Exception {
if (fd().finishConnect()) {
clearFlag(Native.EPOLLOUT);
return true;
} else {
setFlag(Native.EPOLLOUT);
return false;
}
}
@Override
void epollInReady() {
if (fd().isInputShutdown()) {
return;
}
final ChannelConfig config = config();
boolean edgeTriggered = isFlagSet(Native.EPOLLET);
if (!readPending && !edgeTriggered && !config.isAutoRead()) {
// ChannelConfig.setAutoRead(false) was called in the meantime
clearEpollIn0();
return;
}
final ChannelPipeline pipeline = pipeline();
final ByteBufAllocator allocator = config.getAllocator();
RecvByteBufAllocator.Handle allocHandle = this.allocHandle;
if (allocHandle == null) {
this.allocHandle = allocHandle = config.getRecvByteBufAllocator().newHandle();
}
ByteBuf byteBuf = null;
boolean close = false;
try {
// if edgeTriggered is used we need to read all messages as we are not notified again otherwise.
final int maxMessagesPerRead = edgeTriggered
? Integer.MAX_VALUE : config.getMaxMessagesPerRead();
int messages = 0;
int totalReadAmount = 0;
do {
if (spliceQueue != null) {
SpliceInTask spliceTask = spliceQueue.peek();
if (spliceTask != null) {
if (spliceTask.spliceIn(allocHandle)) {
// We need to check if it is still active as if not we removed all SpliceTasks in
// doClose(...)
if (isActive()) {
spliceQueue.remove();
}
continue;
} else {
break;
}
}
}
// we use a direct buffer here as the native implementations only be able
// to handle direct buffers.
byteBuf = allocHandle.allocate(allocator);
int writable = byteBuf.writableBytes();
int localReadAmount = doReadBytes(byteBuf);
if (localReadAmount <= 0) {
// not was read release the buffer
byteBuf.release();
close = localReadAmount < 0;
break;
}
readPending = false;
pipeline.fireChannelRead(byteBuf);
byteBuf = null;
if (totalReadAmount >= Integer.MAX_VALUE - localReadAmount) {
allocHandle.record(totalReadAmount);
// Avoid overflow.
totalReadAmount = localReadAmount;
} else {
totalReadAmount += localReadAmount;
}
if (localReadAmount < writable) {
// Read less than what the buffer can hold,
// which might mean we drained the recv buffer completely.
break;
}
if (!edgeTriggered && !config.isAutoRead()) {
// This is not using EPOLLET so we can stop reading
// ASAP as we will get notified again later with
// pending data
break;
}
if (fd().isInputShutdown()) {
// We need to do this for two reasons:
//
// - If the input was shutdown in between (which may be the case when the user did it in the
// fireChannelRead(...) method we should not try to read again to not produce any
// miss-leading exceptions.
//
// - If the user closes the channel we need to ensure we not try to read from it again as
// the filedescriptor may be re-used already by the OS if the system is handling a lot of
// concurrent connections and so needs a lot of filedescriptors. If not do this we risk
// reading data from a filedescriptor that belongs to another socket then the socket that
// was "wrapped" by this Channel implementation.
break;
}
} while (++ messages < maxMessagesPerRead || isRdHup());
pipeline.fireChannelReadComplete();
allocHandle.record(totalReadAmount);
if (close) {
shutdownInput();
close = false;
}
} catch (Throwable t) {
boolean closed = handleReadException(pipeline, byteBuf, t, close);
if (!closed) {
// trigger a read again as there may be something left to read and because of epoll ET we
// will not get notified again until we read everything from the socket
eventLoop().execute(new OneTimeTask() {
@Override
public void run() {
epollInReady();
}
});
}
} finally {
// Check if there is a readPending which was not processed yet.
// This could be for two reasons:
// * The user called Channel.read() or ChannelHandlerContext.read() in channelRead(...) method
// * The user called Channel.read() or ChannelHandlerContext.read() in channelReadComplete(...) method
//
// See https://github.com/netty/netty/issues/2254
if (!readPending && !config.isAutoRead()) {
clearEpollIn0();
}
}
}
}
private void addToSpliceQueue(final SpliceInTask task) {
EventLoop eventLoop = eventLoop();
if (eventLoop.inEventLoop()) {
addToSpliceQueue0(task);
} else {
eventLoop.execute(new OneTimeTask() {
@Override
public void run() {
addToSpliceQueue0(task);
}
});
}
}
private void addToSpliceQueue0(SpliceInTask task) {
if (spliceQueue == null) {
spliceQueue = PlatformDependent.newMpscQueue();
}
spliceQueue.add(task);
}
protected abstract class SpliceInTask extends MpscLinkedQueueNode {
final ChannelPromise promise;
int len;
protected SpliceInTask(int len, ChannelPromise promise) {
this.promise = promise;
this.len = len;
}
@Override
public SpliceInTask value() {
return this;
}
abstract boolean spliceIn(RecvByteBufAllocator.Handle handle);
protected final int spliceIn(FileDescriptor pipeOut, RecvByteBufAllocator.Handle handle) throws IOException {
// calculate the maximum amount of data we are allowed to splice
int length = Math.min(handle.guess(), len);
int splicedIn = 0;
for (;;) {
// Splicing until there is nothing left to splice.
int localSplicedIn = Native.splice(fd().intValue(), -1, pipeOut.intValue(), -1, length);
if (localSplicedIn == 0) {
break;
}
splicedIn += localSplicedIn;
length -= localSplicedIn;
}
// record the number of bytes we spliced before
handle.record(splicedIn);
return splicedIn;
}
}
// Let it directly implement channelFutureListener as well to reduce object creation.
private final class SpliceInChannelTask extends SpliceInTask implements ChannelFutureListener {
private final AbstractEpollStreamChannel ch;
SpliceInChannelTask(AbstractEpollStreamChannel ch, int len, ChannelPromise promise) {
super(len, promise);
this.ch = ch;
}
@Override
public void operationComplete(ChannelFuture future) throws Exception {
if (!future.isSuccess()) {
promise.setFailure(future.cause());
}
}
@Override
public boolean spliceIn(RecvByteBufAllocator.Handle handle) {
assert ch.eventLoop().inEventLoop();
if (len == 0) {
promise.setSuccess();
return true;
}
try {
// We create the pipe on the target channel as this will allow us to just handle pending writes
// later in a correct fashion without get into any ordering issues when spliceTo(...) is called
// on multiple Channels pointing to one target Channel.
FileDescriptor pipeOut = ch.pipeOut;
if (pipeOut == null) {
// Create a new pipe as non was created before.
FileDescriptor[] pipe = pipe();
ch.pipeIn = pipe[0];
pipeOut = ch.pipeOut = pipe[1];
}
int splicedIn = spliceIn(pipeOut, handle);
if (splicedIn > 0) {
// Integer.MAX_VALUE is a special value which will result in splice forever.
if (len != Integer.MAX_VALUE) {
len -= splicedIn;
}
// Depending on if we are done with splicing inbound data we set the right promise for the
// outbound splicing.
final ChannelPromise splicePromise;
if (len == 0) {
splicePromise = promise;
} else {
splicePromise = ch.newPromise().addListener(this);
}
boolean autoRead = config().isAutoRead();
// Just call unsafe().write(...) and flush() as we not want to traverse the whole pipeline for this
// case.
ch.unsafe().write(new SpliceOutTask(ch, splicedIn, autoRead), splicePromise);
ch.unsafe().flush();
if (autoRead && !splicePromise.isDone()) {
// Write was not done which means the target channel was not writable. In this case we need to
// disable reading until we are done with splicing to the target channel because:
//
// - The user may want to to trigger another splice operation once the splicing was complete.
config().setAutoRead(false);
}
}
return len == 0;
} catch (Throwable cause) {
promise.setFailure(cause);
return true;
}
}
}
private final class SpliceOutTask {
private final AbstractEpollStreamChannel ch;
private final boolean autoRead;
private int len;
SpliceOutTask(AbstractEpollStreamChannel ch, int len, boolean autoRead) {
this.ch = ch;
this.len = len;
this.autoRead = autoRead;
}
public boolean spliceOut() throws Exception {
assert ch.eventLoop().inEventLoop();
try {
int splicedOut = Native.splice(ch.pipeIn.intValue(), -1, ch.fd().intValue(), -1, len);
len -= splicedOut;
if (len == 0) {
if (autoRead) {
// AutoRead was used and we spliced everything so start reading again
config().setAutoRead(true);
}
return true;
}
return false;
} catch (IOException e) {
if (autoRead) {
// AutoRead was used and we spliced everything so start reading again
config().setAutoRead(true);
}
throw e;
}
}
}
private final class SpliceFdTask extends SpliceInTask {
private final FileDescriptor fd;
private final ChannelPromise promise;
private final int offset;
SpliceFdTask(FileDescriptor fd, int offset, int len, ChannelPromise promise) {
super(len, promise);
this.fd = fd;
this.promise = promise;
this.offset = offset;
}
@Override
public SpliceFdTask value() {
return this;
}
@Override
public boolean spliceIn(RecvByteBufAllocator.Handle handle) {
assert eventLoop().inEventLoop();
if (len == 0) {
promise.setSuccess();
return true;
}
try {
FileDescriptor[] pipe = pipe();
FileDescriptor pipeIn = pipe[0];
FileDescriptor pipeOut = pipe[1];
try {
int splicedIn = spliceIn(pipeOut, handle);
if (splicedIn > 0) {
// Integer.MAX_VALUE is a special value which will result in splice forever.
if (len != Integer.MAX_VALUE) {
len -= splicedIn;
}
do {
int splicedOut = Native.splice(pipeIn.intValue(), -1, fd.intValue(), offset, splicedIn);
splicedIn -= splicedOut;
} while (splicedIn > 0);
if (len == 0) {
promise.setSuccess();
return true;
}
}
return false;
} finally {
safeClosePipe(pipeIn);
safeClosePipe(pipeOut);
}
} catch (Throwable cause) {
promise.setFailure(cause);
return true;
}
}
}
}