All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.arosbio.data.transform.scale.RobustScaler Maven / Gradle / Ivy

Go to download

Conformal AI package, including all data IO, transformations, machine learning models and predictor classes. Without inclusion of chemistry-dependent code.

There is a newer version: 2.0.0
Show newest version
/*
 * Copyright (C) Aros Bio AB.
 *
 * CPSign is an Open Source Software that is dual licensed to allow you to choose a license that best suits your requirements:
 *
 * 1) GPLv3 (GNU General Public License Version 3) with Additional Terms, including an attribution clause as well as a limitation to use the software for commercial purposes.
 *
 * 2) CPSign Proprietary License that allows you to use CPSign for commercial activities, such as in a revenue-generating operation or environment, or integrate CPSign in your proprietary software without worrying about disclosing the source code of your proprietary software, which is required if you choose to use the software under GPLv3 license. See arosbio.com/cpsign/commercial-license for details.
 */
package com.arosbio.data.transform.scale;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import org.apache.commons.math3.stat.descriptive.rank.Percentile;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.arosbio.commons.CollectionUtils;
import com.arosbio.commons.TypeUtils;
import com.arosbio.commons.config.NumericConfig;
import com.arosbio.commons.mixins.Aliased;
import com.arosbio.data.DataRecord;
import com.arosbio.data.DataUtils;
import com.arosbio.data.Dataset.SubSet;
import com.arosbio.data.FeatureVector;
import com.arosbio.data.FeatureVector.Feature;
import com.arosbio.data.MissingValueFeature;
import com.arosbio.data.SparseVector;
import com.arosbio.data.transform.ColumnSpec;
import com.arosbio.data.transform.ColumnTransformer;
import com.google.common.collect.Range;

/**
 * The Standardizer applies Gaussian standard normalization to normalize/scale data
 * to zero mean and unit variance. 
 *  
 * @author staffan
 *
 */
public class RobustScaler extends ColumnTransformer implements FeatureScaler, Aliased {

	public static final String NAME = "RobustScaler";
	public static final String[] ALIASES = new String[]{"QuantileScaler"};

	private static final List UPPER_QUANT_PARAM_NAMES = Arrays.asList("upperQuantile", "maxQuantile");
	private static final List LOWER_QUANT_PARAM_NAMES = Arrays.asList("lowerQuantile", "minQuantile");
	private static final Logger LOGGER = LoggerFactory.getLogger(RobustScaler.class);
	private static final Range ALLOWED_LOWER_QUANTILE = Range.openClosed(0d, 50d);
	private static final Range ALLOWED_UPPER_QUANTILE = Range.closedOpen(50d, 100d);
	
	/**
	 * 
	 */
	private static final long serialVersionUID = -5896649582508058298L;

	private double lowerQuantile = 25;
	private double upperQuantile = 75;
	private boolean inPlace = true;

	/*
	 *  The scale factors (column -> {median, pUpper-pLower})
	 */
	private Map scaleFactors;

	private transient TransformInfo info;

	/**
	 * Default scaler applies to all features and using default quantiles ( 25% to 75% ), or quartile Q1-Q3
	 */
	public RobustScaler() {
	}

	public RobustScaler(double lowerQuantile, double upperQuantile) {
		this();
		assertValidRange(lowerQuantile, upperQuantile);
		this.lowerQuantile = lowerQuantile;
		this.upperQuantile = upperQuantile;
	}

	public RobustScaler(ColumnSpec columns) {
		super(columns);
	}

	public RobustScaler(ColumnSpec columns, double lowerQuantile, double upperQuantile) {
		this(columns);
		assertValidRange(lowerQuantile, upperQuantile);
		this.lowerQuantile = lowerQuantile;
		this.upperQuantile = upperQuantile;
	}

	public Map getScaleFactors(){
		return scaleFactors;
	}

	public String getDescription() {
		return "The robust scaler normalize features based on interquartile range (IQR). It behaves similarly to the standardizer but instead subtracts the median and scales the size based on percentiles/quantiles "
				+ "(default is scaling to the 25 - 75 percentile range). By changing the lower and upper quantile the scaling becomes more or less sensitive to outliers. " + CONVERTING_SPARSE_TO_DENSE_WARNING_MSG; 
	}

	public String toString() {
		return NAME;
	}

	@Override
	public boolean isTransformInPlace() {
		return inPlace;
	}

	@Override
	public RobustScaler transformInPlace(boolean inPlace) {
		this.inPlace = inPlace;
		return this;
	}

	public RobustScaler setQuantileRange(double lower, double upper) {
		assertValidRange(lower, upper);
		this.lowerQuantile=lower;
		this.upperQuantile = upper;
		return this;
	}

	public double getLowerQuantile() {
		return lowerQuantile;
	}

	public double getUpperQuantile() {
		return upperQuantile;
	}

	private void assertValidRange(double lower, double upper) {
		if (upper <= lower)
			throw new IllegalArgumentException("Lower quantile must be a smaller number than the upper, got invalid quantile range ["+lower + ".."+upper+']');
		if (! ALLOWED_LOWER_QUANTILE.contains(lower)) {
			throw new IllegalArgumentException("Invalid "+LOWER_QUANT_PARAM_NAMES.get(0) +" '" + lower + "' - value must be in the range "+ALLOWED_LOWER_QUANTILE);
		}
		if (! ALLOWED_UPPER_QUANTILE.contains(upper)) {
			throw new IllegalArgumentException("Invalid "+UPPER_QUANT_PARAM_NAMES.get(0) + " '" + upper + "' - value must be in the range "+ ALLOWED_UPPER_QUANTILE);
		}
	}

	public RobustScaler clone() {
		RobustScaler clone = new RobustScaler();
		if (scaleFactors != null)
			clone.scaleFactors = new HashMap<>(scaleFactors);
		clone.setColumns(getColumns().clone());
		clone.lowerQuantile = lowerQuantile;
		clone.upperQuantile = upperQuantile;
		return clone;
	}

	@Override
	public String getName() {
		return NAME;
	}

	@Override
	public String[] getAliases() {
		return ALIASES;
	}

	@Override
	public boolean isFitted() {
		return scaleFactors != null;
	}

	@Override
	public RobustScaler fit(Collection data) throws TransformationException {
		LOGGER.debug("Fitting transformer {}", this);

		assertValidRange(lowerQuantile, upperQuantile);

		if (data.iterator().next().getFeatures() instanceof SparseVector) {
			fitSparseData(data);
		} else {
			fitNonSparseData(data);
		}

		LOGGER.debug("Finished fitting transformer");

		return this;
	}

	@SuppressWarnings("unchecked")
	private void fitSparseData(Collection data) throws TransformationException {
		int maxFeatIndex = DataUtils.getMaxFeatureIndex(data);

		if (!getColumns().useAll()) {
			LOGGER.debug("Fitting transformer using a subset of features");
			fitSparseDataSubsetFeatures(data);
			return;
		}

		int nRec = data.size();
		List[] colLists = new List[maxFeatIndex+1];
		// for (int i=0; i col = colLists[f.getIndex()];
				if (col == null) {
					colLists[f.getIndex()] = new ArrayList<>();
					col = colLists[f.getIndex()];
				}
				col.add(f.getValue());
			}
		}

		// Get the values
		scaleFactors = new HashMap<>();
		for (int col : getColumns().getColumns(maxFeatIndex) ) {
			List vals = colLists[col];
			if (vals == null || vals.isEmpty()) {
				scaleFactors.put(col, new double[] {0,1});
				continue;
			}
			double[] colValues = new double[nRec];
			fillArray(colValues, vals); 
			scaleFactors.put(col, fitOneFeature(colValues));
			colLists[col].clear(); // might be pre-optimization, but try to clear up some memory
		}

	}

	private void fitSparseDataSubsetFeatures(Collection data) throws TransformationException {
		int maxFeatIndex = DataUtils.getMaxFeatureIndex(data);

		List indices = getColumns().getColumns(maxFeatIndex);
		int maxIndex = indices.get(indices.size()-1); // This list should always be sorted! Collections.max(indices);

		Map> featuresMap = new HashMap<>();
		int nRec = data.size();

		for (DataRecord r : data) {
			for (Feature f : r.getFeatures()) {
				int index = f.getIndex();
				if (index > maxIndex)
					break;

				if (indices.contains(index)) {
					if (f instanceof MissingValueFeature)
						throw new TransformationException("Transformation using " + NAME + " not possible on missing-data features");

					if (!featuresMap.containsKey(index))
						featuresMap.put(index, new ArrayList<>());

					featuresMap.get(index).add(f.getValue());

				}
			}

		}

		// Compute the values
		scaleFactors = new HashMap<>();
		for (int col : featuresMap.keySet()) {
			double[] colValues = new double[nRec];
			fillArray(colValues, featuresMap.get(col)); 
			scaleFactors.put(col, fitOneFeature(colValues));
		}

	}

	private static void fillArray(double[] arr, List listVals) {
		for (int i=0; i data) {
		scaleFactors = new HashMap<>();
		for (int col: getColumns().getColumns(DataUtils.getMaxFeatureIndex(data))) {
			scaleFactors.put(col, fitOneFeature(data, col));
		}
	}

	private double[] fitOneFeature(Collection recs, int index){
		List column = DataUtils.extractColumn(recs, index);

		// Verify no null or NaN
		if (CollectionUtils.containsNullOrNaN(column)) {
			throw new TransformationException("Transformation using " + NAME + " not possible on missing-data features");
		}
		return fitOneFeature(CollectionUtils.toArray(column));

	}

	private double[] fitOneFeature(double[] vals) {
		Percentile calc = new Percentile();
		calc.setData(vals);

		double median = calc.evaluate(50);
		double low = calc.evaluate(lowerQuantile);
		double high = calc.evaluate(upperQuantile);	

		// do nothing with 0 "variance" features, avoid division with 0
		double scale = high-low;
		if (scale < 1e-10) {
			scale=1d;
		}

		return new double[] {median, scale}; 
	}

	private double transformOneFeature(double old, double median, double scale) {
		return (old - median) / scale;
	}


	@Override
	public SubSet fitAndTransform(SubSet data) throws TransformationException {
		fit(data);

		return transform(data);
	}

	@Override
	public SubSet transform(SubSet data) throws IllegalStateException {
		if (scaleFactors == null || scaleFactors.isEmpty()) {
			throw new IllegalStateException("Transformer " + NAME + " not fitted yet");
		}
		if (data.isEmpty())
			return inPlace ? data : new SubSet(data.getDataType());
		LOGGER.debug("Applying scaler transformer {}", this);
		SubSet transformed = data;
		if (inPlace) {
			for (DataRecord r : data) {
				transform(r.getFeatures());
			}
		} else {
			transformed = new SubSet(data.size());
			for (DataRecord r : data) {
				transformed.add(new DataRecord(r.getLabel(), transform(r.getFeatures())));
			}
		}

		info = new TransformInfo(0, data.size());

		LOGGER.debug("Finished transformer: {}", info);

		return transformed;
	}

	@Override
	public FeatureVector transform(FeatureVector object) throws IllegalStateException {
		if (scaleFactors == null || scaleFactors.isEmpty()) {
			throw new IllegalStateException("Transformer " + NAME + " not fit yet");
		}

		FeatureVector toReturn = (inPlace ? object : object.clone());
		
		for (Map.Entry column : scaleFactors.entrySet()) {
			toReturn.withFeature(column.getKey(), 
					transformOneFeature(
							object.getFeature(column.getKey()), 
							column.getValue()[0], 
							column.getValue()[1]
							)
					);
		}
		return toReturn;
	}

	@Override
	public boolean appliesToNewObjects() {
		return true;
	}

	@Override
	public boolean applicableToClassificationData() {
		return true;
	}

	@Override
	public boolean applicableToRegressionData() {
		return true;
	}

	@Override
	public TransformInfo getLastInfo() {
		return info;
	}

	@Override
	public List getConfigParameters() {
		List params = new ArrayList<>();
		params.add(new NumericConfig.Builder(LOWER_QUANT_PARAM_NAMES, 25)
			.range(ALLOWED_LOWER_QUANTILE)
			.description("The percentile to use as lower bound (i.e. compute a measure of variance based on)")
			.build());
		params.add(new NumericConfig.Builder(UPPER_QUANT_PARAM_NAMES, 75)
			.range(ALLOWED_UPPER_QUANTILE)
			.description("The percentile to use as upper bound (i.e. compute a measure of variance based on)")
			.build());
		params.addAll(super.getConfigParameters());
		return params;
	}

	@Override
	public void setConfigParameters(Map params) throws IllegalStateException, IllegalArgumentException {
		Map toPassOn = new HashMap<>();

		Double min = null, max = null; 
		for (Map.Entry kv: params.entrySet()) {

			if (CollectionUtils.containsIgnoreCase(LOWER_QUANT_PARAM_NAMES, kv.getKey())) {
				min = TypeUtils.asDouble(kv.getValue());
			} else if (CollectionUtils.containsIgnoreCase(UPPER_QUANT_PARAM_NAMES, kv.getKey())) {
				max = TypeUtils.asDouble(kv.getValue());
			} else {
				toPassOn.put(kv.getKey(), kv.getValue());
			}

		}

		// pass along stuff to super-type before making any change to internal state
		if (!toPassOn.isEmpty())
			super.setConfigParameters(toPassOn);

		assertValidRange((min!=null? min : lowerQuantile), (max!=null? max : upperQuantile));
		if (min != null)
			lowerQuantile = min;
		if (max != null)
			upperQuantile = max;


		LOGGER.debug("Updated config parameters, now using lowerQuantile: {}, and upperQuantile: {}",
				lowerQuantile, upperQuantile);
	}

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy