com.articulate.sigma.semRewrite.datesandnumber.StanfordDateTimeExtractor Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of sigma-component Show documentation
Show all versions of sigma-component Show documentation
Sigma knowledge engineering system is an system for developing, viewing and debugging theories in first
order logic. It works with Knowledge Interchange Format (KIF) and is optimized for the Suggested Upper Merged
Ontology (SUMO) www.ontologyportal.org.
package com.articulate.sigma.semRewrite.datesandnumber;
/*
Copyright 2014-2015 IPsoft
Author: Nagaraj Bhat [email protected]
Rashmi Rao
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program ; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA
*/
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Properties;
import edu.stanford.nlp.ling.CoreAnnotations;
import edu.stanford.nlp.ling.CoreAnnotations.BeginIndexAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.EndIndexAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.NamedEntityTagAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.NormalizedNamedEntityTagAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.PartOfSpeechAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.TextAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.TokensAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.LemmaAnnotation;
import edu.stanford.nlp.ling.CoreLabel;
import edu.stanford.nlp.pipeline.Annotation;
import edu.stanford.nlp.pipeline.StanfordCoreNLP;
import edu.stanford.nlp.semgraph.SemanticGraph;
import edu.stanford.nlp.semgraph.SemanticGraphCoreAnnotations.CollapsedDependenciesAnnotation;
import edu.stanford.nlp.util.CoreMap;
import edu.stanford.nlp.util.StringUtils;
public class StanfordDateTimeExtractor {
public static List DATE_ENTITIES = new ArrayList(Arrays.asList("DATE", "TIME"));
public static List MEASURE_ENTITIES = new ArrayList(Arrays.asList(
"NUMBER", "PERCENT", "ORDINAL"));
private List dependencyList = new ArrayList();
private SemanticGraph dependencies;
private int tokenCount = 0;
/** ***************************************************************
*/
public List getDependencyList() {
return dependencyList;
}
/** ***************************************************************
*/
public int getTokenCount() {
return tokenCount;
}
/** ***************************************************************
*/
public SemanticGraph getDependencies() {
return dependencies;
}
/** ***************************************************************
*/
public void setDependencies(SemanticGraph dependencies) {
this.dependencies = dependencies;
}
/** ***************************************************************
* Calls the stanford parser and extracts the necessary information about the words in the string
* and stores them in Token object for further usage.
* @param input: The natural language string.
* @return List of Tokens.
*/
public List populateParserInfo(String inputSentence) {
Properties props = new Properties();
props.setProperty("annotators", "tokenize, ssplit, pos, lemma, ner, parse, dcoref");
StanfordCoreNLP pipeline = new StanfordCoreNLP(props);
Annotation annotation;
annotation = new Annotation(inputSentence);
pipeline.annotate(annotation);
List sentences = annotation.get(CoreAnnotations.SentencesAnnotation.class);
int sentenceCount = 0;
List tokenList = new ArrayList();
for (CoreMap sentence: sentences) {
tokenCount = 1;
for (CoreLabel token: sentence.get(TokensAnnotation.class)) {
String namedEntity = token.get(NamedEntityTagAnnotation.class);
if ((DATE_ENTITIES.contains(namedEntity)) || ((MEASURE_ENTITIES.contains(namedEntity))&& (token.get(PartOfSpeechAnnotation.class).equals("CD") || token.get(PartOfSpeechAnnotation.class).equals("JJ")))
|| (namedEntity.equals("DURATION") && token.get(PartOfSpeechAnnotation.class).equals("CD"))) {
Tokens tokens = new Tokens();
tokens.setId(tokenCount);
tokens.setWord(token.get(TextAnnotation.class));
tokens.setNer(token.get(NamedEntityTagAnnotation.class));
tokens.setNormalizedNer(token.get(NormalizedNamedEntityTagAnnotation.class));
tokens.setCharBegin(token.get(BeginIndexAnnotation.class));
tokens.setCharEnd(token.get(EndIndexAnnotation.class));
tokens.setPos(token.get(PartOfSpeechAnnotation.class));
tokens.setLemma(token.get(LemmaAnnotation.class));
tokenList.add(tokens);
}
tokenCount++;
}
dependencies = (sentence.get(CollapsedDependenciesAnnotation.class));
dependencyList = (StringUtils.split(dependencies.toList(), "\n"));
}
return tokenList;
}
}