All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.d3x.morpheus.viz.chart.xy.XyTrendBase Maven / Gradle / Ivy

There is a newer version: 1.0.3
Show newest version
/*
 * Copyright (C) 2014-2018 D3X Systems - All Rights Reserved
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.d3x.morpheus.viz.chart.xy;

import java.util.Optional;
import java.util.function.IntFunction;

import com.d3x.morpheus.array.Array;
import com.d3x.morpheus.frame.DataFrame;
import com.d3x.morpheus.frame.DataFrameLeastSquares;
import com.d3x.morpheus.range.Range;
import com.d3x.morpheus.util.Bounds;

/**
 * A convenience base class for building XyTrend implementations
 *
 * @author Xavier Witdouck
 *
 * 

This is open source software released under the Apache 2.0 License

*/ public abstract class XyTrendBase implements XyTrend { private Comparable seriesKey; private double beta; private double intercept; private double rSquared; /** * Constructor * @param seriesKey the series key for trend */ public XyTrendBase(Comparable seriesKey) { this.seriesKey = seriesKey; } @Override public Comparable seriesKey() { return seriesKey; } /** * Returns the R-squared * @return the R-squared */ public double r2() { return rSquared; } /** * Returns the regression slope * @return slope parameter */ public double slope() { return beta; } /** * Returns the regression intercept * @return intercept parameter */ public double intercept() { return intercept; } /** * Returns a newly created single column DataFrame with the trend line values * @param source the source model from which to create the trend line from * @param seriesKey the series key in the source model from which to generate the trend * @param the domain axis type * @return the newly created trend line DataFrame */ public DataFrame createTrendData(XyDataset source, Comparable seriesKey, Comparable trendKey) { final DataFrame seriesFrame = createSeriesData(source, seriesKey); final Optional> regressorRange = seriesFrame.col("Regressor").bounds(); if (!regressorRange.isPresent()) { return DataFrame.empty(); } else { final double minValue = regressorRange.get().lower().doubleValue(); final double maxValue = regressorRange.get().upper().doubleValue(); final double step1 = ((maxValue - minValue)) / 20d; final double step2 = ((maxValue - minValue)) / 10d; final Array values = Range.of(minValue - step1, maxValue + step1 * 2d, step2).toArray(); return DataFrame.of(values, Comparable.class, columns -> { seriesFrame.regress().ols(seriesKey, "Regressor", true, slr -> { this.beta = slr.getBetaValue("Regressor", DataFrameLeastSquares.Field.PARAMETER); this.intercept = slr.getInterceptValue(DataFrameLeastSquares.Field.PARAMETER); this.rSquared = slr.getRSquared(); columns.add(trendKey, Double.class).applyDoubles(v -> { final double x = v.rowKey(); return beta * x + intercept; }); return Optional.empty(); }); }); } } /** * Returns a newly created DataFrame representing the series specified * @param seriesKey the series key * @return the one series DataFrame */ private DataFrame createSeriesData(XyDataset dataset, Comparable seriesKey) { final DataFrame frame = dataset.frame(); final Range rowKeys = Range.of(0, frame.rowCount()); final int seriesIndex = frame.cols().ordinalOf(seriesKey); final IntFunction domainFunc = dataset.domainFunction(); return DataFrame.of(rowKeys, Object.class, columns -> { columns.add("Regressor", Double.class).applyDoubles(v -> ((Number)domainFunc.apply(v.rowOrdinal())).doubleValue()); columns.add(seriesKey, Double.class).applyDoubles(v -> frame.getDoubleAt(v.rowOrdinal(), seriesIndex)); }); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy