All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.dataartisans.flink.cascading.planner.FlinkFlowStep Maven / Gradle / Ivy

/*
 * Copyright 2015 data Artisans GmbH
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *  http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.dataartisans.flink.cascading.planner;

import cascading.flow.FlowElement;
import cascading.flow.FlowException;
import cascading.flow.FlowNode;
import cascading.flow.FlowProcess;
import cascading.flow.hadoop.util.HadoopUtil;
import cascading.flow.planner.BaseFlowStep;
import cascading.flow.planner.FlowStepJob;
import cascading.flow.planner.Scope;
import cascading.flow.planner.graph.ElementGraph;
import cascading.flow.planner.graph.Extent;
import cascading.flow.planner.process.FlowNodeGraph;
import cascading.management.state.ClientState;
import cascading.pipe.Boundary;
import cascading.pipe.CoGroup;
import cascading.pipe.GroupBy;
import cascading.pipe.HashJoin;
import cascading.pipe.Merge;
import cascading.pipe.Pipe;
import cascading.pipe.Splice;
import cascading.pipe.joiner.BufferJoin;
import cascading.pipe.joiner.InnerJoin;
import cascading.pipe.joiner.Joiner;
import cascading.pipe.joiner.LeftJoin;
import cascading.property.ConfigDef;
import cascading.tap.Tap;
import cascading.tap.hadoop.io.MultiInputFormat;
import cascading.tuple.Fields;
import cascading.tuple.Tuple;
import com.dataartisans.flink.cascading.runtime.coGroup.bufferJoin.BufferJoinKeyExtractor;
import com.dataartisans.flink.cascading.runtime.coGroup.bufferJoin.CoGroupBufferReducer;
import com.dataartisans.flink.cascading.runtime.coGroup.regularJoin.CoGroupReducer;
import com.dataartisans.flink.cascading.runtime.coGroup.regularJoin.TupleAppendOuterJoiner;
import com.dataartisans.flink.cascading.runtime.coGroup.regularJoin.TupleOuterJoiner;
import com.dataartisans.flink.cascading.runtime.groupBy.GroupByReducer;
import com.dataartisans.flink.cascading.runtime.hashJoin.NaryHashJoinJoiner;
import com.dataartisans.flink.cascading.runtime.util.FlinkFlowProcess;
import com.dataartisans.flink.cascading.runtime.hashJoin.BinaryHashJoinJoiner;
import com.dataartisans.flink.cascading.runtime.hashJoin.JoinPrepareMapper;
import com.dataartisans.flink.cascading.runtime.hashJoin.TupleAppendCrosser;
import com.dataartisans.flink.cascading.runtime.hashJoin.TupleAppendJoiner;
import com.dataartisans.flink.cascading.runtime.hashJoin.HashJoinMapper;
import com.dataartisans.flink.cascading.runtime.each.EachMapper;
import com.dataartisans.flink.cascading.runtime.sink.TapOutputFormat;
import com.dataartisans.flink.cascading.runtime.source.TapInputFormat;
import com.dataartisans.flink.cascading.runtime.util.IdMapper;
import com.dataartisans.flink.cascading.types.tuple.TupleTypeInfo;
import com.dataartisans.flink.cascading.types.tuplearray.TupleArrayTypeInfo;
import com.dataartisans.flink.cascading.util.FlinkConfigConverter;
import org.apache.flink.api.common.Plan;
import org.apache.flink.api.common.operators.Order;
import org.apache.flink.api.common.operators.base.JoinOperatorBase.JoinHint;
import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.GroupReduceOperator;
import org.apache.flink.api.java.operators.JoinOperator;
import org.apache.flink.api.java.operators.Operator;
import org.apache.flink.api.java.operators.PartitionOperator;
import org.apache.flink.api.java.operators.SortPartitionOperator;
import org.apache.flink.api.java.operators.SortedGrouping;
import org.apache.flink.api.java.operators.UnsortedGrouping;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.api.java.typeutils.ObjectArrayTypeInfo;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapred.JobConf;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.lang.reflect.Field;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Set;

public class FlinkFlowStep extends BaseFlowStep {

	private static final Logger LOG = LoggerFactory.getLogger(FlinkFlowStep.class);

	private ExecutionEnvironment env;
	private List classPath;

	public FlinkFlowStep(ExecutionEnvironment env, ElementGraph elementGraph, FlowNodeGraph flowNodeGraph, List classPath) {
		super(elementGraph, flowNodeGraph);
		this.env = env;
		this.classPath = classPath;
	}

	/**
	 * Configures the Flink program for this step
	 */
	public Configuration createInitializedConfig( FlowProcess flowProcess, Configuration parentConfig ) {

		this.env.getConfig().registerKryoType(Tuple.class);

		Configuration config = parentConfig == null ? new JobConf() : HadoopUtil.copyJobConf( parentConfig );
		config.set( "cascading.flow.step.num", Integer.toString( getOrdinal() ) );
		HadoopUtil.setIsInflow(config);

		this.setConfig(config);

		return config;
	}

	protected FlowStepJob createFlowStepJob( ClientState clientState, FlowProcess flowProcess, Configuration initializedStepConfig ) {
		this.buildFlinkProgram(flowProcess);
		return new FlinkFlowStepJob(clientState, this, initializedStepConfig, classPath);
	}

	/**
	 * Method clean removes any temporary files used by this FlowStep instance. It will log any IOExceptions thrown.
	 *
	 * @param config of type Configuration
	 */
	public void clean( Configuration config ) {

	}

	public ExecutionEnvironment getExecutionEnvironment() {
		return this.env;
	}

	public Plan getFlinkPlan() {
		return this.env.createProgramPlan();
	}

	private void printFlowStep() {
		Iterator iterator = getFlowNodeGraph().getTopologicalIterator();

		LOG.info("Step Cnt: {} ", getFlowNodeGraph().vertexSet().size());
		LOG.info("Edge Cnt: {} ", getFlowNodeGraph().edgeSet().size());
		LOG.info("Src Set: {} ", getFlowNodeGraph().getSourceElements());
		LOG.info("Snk Set: {} ", getFlowNodeGraph().getSinkElements());
		LOG.info("##############");

		while(iterator.hasNext()) {

			FlowNode next = iterator.next();

			LOG.info("Node cnt: {} ", next.getElementGraph().vertexSet().size());
			LOG.info("Edge cnt: {} ", next.getElementGraph().edgeSet().size());

			LOG.info("Nodes: {} ", next.getElementGraph().vertexSet());

			LOG.info("-----------");
		}


	}

	public void buildFlinkProgram(FlowProcess flowProcess) {

		printFlowStep();

		int numMappers;
		try {
			numMappers = Integer.parseInt(((FlinkFlowProcess) flowProcess).getConfig().get("flink.num.sourceTasks"));
		} catch (NumberFormatException e) {
			numMappers = -1;
		}

		int numReducers;
		try {
			numReducers = Integer.parseInt(((FlinkFlowProcess) flowProcess).getConfig().get("flink.num.shuffleTasks"));
		} catch (NumberFormatException e) {
			numReducers = -1;
		}

		numMappers = (numMappers > 0) ? numMappers : env.getParallelism();
		numReducers = (numReducers > 0) ? numReducers : env.getParallelism();

		FlowNodeGraph flowNodeGraph = getFlowNodeGraph();
		Iterator iterator = flowNodeGraph.getTopologicalIterator();

		Map> flinkMemo = new HashMap<>();

		while(iterator.hasNext()) {
			FlowNode node = iterator.next();

			Set all = node.getElementGraph().vertexSet();
			Set sources = getSources(node);
			Set sinks = getSinks(node);
			Set inner = getInnerElements(node);

			// SOURCE
			if (sources.size() == 1 &&
					allOfType(sources, Tap.class) &&
					sinks.size() == 1 &&
					allOfType(sinks, Boundary.class)) {

				DataSet sourceFlow = translateSource(flowProcess, env, node, numMappers);
				for(FlowElement sink : sinks) {
					flinkMemo.put(sink, sourceFlow);
				}
			}
			// SINK
			else if (sources.size() == 1 &&
					allOfType(sources, Boundary.class) &&
					sinks.size() == 1 &&
					allOfType(sinks, Tap.class)) {

				DataSet input = (DataSet) flinkMemo.get(getSingle(sources));
				translateSink(flowProcess, input, node);
			}
			// SPLIT or EMPTY NODE (Single boundary source, one or more boundary sinks & no intermediate nodes)
			else if (sources.size() == 1 &&
					allOfType(sources, Boundary.class) &&
					sinks.size() >= 1 &&
					allOfType(sinks, Boundary.class) &&
					inner.size() == 0 ) {

				// just forward
				for(FlowElement sink : sinks) {
					flinkMemo.put(sink, flinkMemo.get(getSingle(sources)));
				}

			}
			// INPUT OF GROUPBY (one or more boundary sources, single groupBy sink, no inner)
			else if(sources.size() > 0 &&
					allOfType(sources, Boundary.class) &&
					sinks.size() == 1 &&
					allOfType(sinks, GroupBy.class) &&
					inner.size() == 0) {

				GroupBy groupBy = (GroupBy)getSingle(sinks);

				List> groupByInputs = new ArrayList<>(sources.size());
				for(FlowElement e : sources) {
					groupByInputs.add((DataSet)flinkMemo.get(e));
				}

				// prepare groupBy input
				DataSet groupByInput = prepareGroupByInput(groupByInputs, node);

				flinkMemo.put(groupBy, groupByInput);
			}
			// GROUPBY (Single groupBy source)
			else if (sources.size() == 1 &&
					allOfType(sources, GroupBy.class)) {

				DataSet input = (DataSet)flinkMemo.get(getSingle(sources));
				DataSet grouped = translateGroupBy(input, node, numReducers);
				for(FlowElement sink : sinks) {
					flinkMemo.put(sink, grouped);
				}
			}
			// INPUT OF COGROUP (one or more boundary sources, single coGroup sink, no inner)
			else if(sources.size() > 0 &&
					allOfType(sources, Boundary.class) &&
					sinks.size() == 1 &&
					allOfType(sinks, CoGroup.class) &&
					inner.size() == 0) {

				CoGroup coGroup = (CoGroup)getSingle(sinks);

				List> coGroupInputs = new ArrayList<>(sources.size());
				for(FlowElement e : getNodeInputsInOrder(node, coGroup)) {
					coGroupInputs.add((DataSet)flinkMemo.get(e));
				}

				// prepare coGroup input
				DataSet input = prepareCoGroupInput(coGroupInputs, node, numReducers);
				flinkMemo.put(coGroup, input);
			}
			// COGROUP (Single CoGroup source)
			else if (sources.size() == 1 &&
					allOfType(sources, CoGroup.class)) {

				CoGroup coGroup = (CoGroup)getSingle(sources);

				DataSet input = flinkMemo.get(coGroup);
				DataSet coGrouped = translateCoGroup(input, node, numReducers);

				for(FlowElement sink : sinks) {
					flinkMemo.put(sink, coGrouped);
				}
			}
			// HASHJOIN (one or more boundary source, followed by a single HashJoin)
			else if(sources.size() > 0 &&
					allOfType(sources, Boundary.class) &&
					getCommonSuccessor(sources, node) instanceof HashJoin) {

				HashJoin hashJoin = (HashJoin)getCommonSuccessor(sources, node);
				List> hashJoinInputs = new ArrayList<>(sources.size());
				for(FlowElement e : getNodeInputsInOrder(node, hashJoin)) {
					hashJoinInputs.add((DataSet)flinkMemo.get(e));
				}

				DataSet joined = translateHashJoin(hashJoinInputs, node);
				for(FlowElement sink : sinks) {
					flinkMemo.put(sink, joined);
				}

			}
			// MERGE (multiple boundary sources, single boundary sink, single merge inner)
			else if (sources.size() > 1 &&
					allOfType(sources, Boundary.class) &&
					sinks.size() == 1 &&
					allOfType(sinks, Boundary.class) &&
					inner.size() == 1 &&
					allOfType(inner, Merge.class)) {

				List> mergeInputs = new ArrayList<>(sources.size());
				for(FlowElement e : sources) {
					mergeInputs.add((DataSet)flinkMemo.get(e));
				}

				DataSet unioned = translateMerge(mergeInputs, node);
				for(FlowElement sink : sinks) {
					flinkMemo.put(sink, unioned);
				}
			}
			// MAP (Single boundary source AND nothing else matches)
			else if (sources.size() == 1 &&
					allOfType(sources, Boundary.class)) {

				DataSet input = (DataSet)flinkMemo.get(getSingle(sources));
				DataSet mapped = translateMap(input, node);
				for(FlowElement sink : sinks) {
					flinkMemo.put(sink, mapped);
				}
			}
			else {
				throw new RuntimeException("Could not translate this node: "+node.getElementGraph().vertexSet());
			}
		}

	}

	private DataSet translateSource(FlowProcess flowProcess, ExecutionEnvironment env, FlowNode node, int dop) {

		Tap tap = this.getSingle(node.getSourceTaps());
		JobConf tapConfig = new JobConf(this.getNodeConfig(node));
		tap.sourceConfInit(flowProcess, tapConfig);
		tapConfig.set( "cascading.step.source", Tap.id( tap ) );

		Fields outFields = tap.getSourceFields();
		registerKryoTypes(outFields);

		JobConf sourceConfig = new JobConf(this.getNodeConfig(node));
		MultiInputFormat.addInputFormat(sourceConfig, tapConfig);

		DataSet src = env
				.createInput(new TapInputFormat(node), new TupleTypeInfo(outFields))
						.name(tap.getIdentifier())
						.setParallelism(dop)
						.withParameters(FlinkConfigConverter.toFlinkConfig(new Configuration(sourceConfig)));

		return src;

	}

	private void translateSink(FlowProcess flowProcess, DataSet input, FlowNode node) {

		Tap tap = this.getSingle(node.getSinkTaps());
		Configuration sinkConfig = this.getNodeConfig(node);
		tap.sinkConfInit(flowProcess, sinkConfig);

		int desiredDop = tap.getScheme().getNumSinkParts();
		int inputDop = ((Operator)input).getParallelism();
		int dop;

		if (inputDop == 1) {
			// input operators have dop 1. Probably because they perform a non-keyed reduce or coGroup
			dop = 1;
		}
		else {
			if (desiredDop > 0) {
				// output dop explicitly set.
				if (input instanceof GroupReduceOperator) {
					// input is a reduce and we must preserve its sorting.
					// we must set the desired dop also for reduce and related operators
					adjustDopOfReduceOrCoGroup((GroupReduceOperator) input, desiredDop);
				}
				dop = desiredDop;
			}
			else {
				dop = inputDop;
			}
		}

		input
				.output(new TapOutputFormat(node))
				.name(tap.getIdentifier())
				.setParallelism(dop)
				.withParameters(FlinkConfigConverter.toFlinkConfig(sinkConfig));

	}

	/**
	 * Adjusts the parallelism of a GroupReduce operator (and all associated operators) that
	 * belongs to a Cascading GroupBy or CoGroup pipe.
	 * This needs to be done if the result must be emitted in order and a specific sink
	 * parallelism is requested.
	 *
	 * @param reduceOp The operator whose DOP needs to be adjusted
	 * @param dop The parallelism to set
	 */
	private void adjustDopOfReduceOrCoGroup(GroupReduceOperator reduceOp, int dop) {

		reduceOp.setParallelism(dop);

		DataSet reduceInput = reduceOp.getInput();
		if (reduceInput instanceof SortPartitionOperator) {
			// We have a Reduce operator whose grouping keys need to be reversely ordered.
			// This yields: input -> PartitionOperator -> SortPartitionOperator -> GroupReduceOperator.
			// The DOPs of the PartitionOperator and SortPartitionOperator must be adjusted.
			SortPartitionOperator sortOp = (SortPartitionOperator)reduceInput;
			sortOp.setParallelism(dop);
			DataSet sortInput = sortOp.getInput();
			if (sortInput instanceof PartitionOperator) {
				PartitionOperator partitionOp = (PartitionOperator)sortInput;
				partitionOp.setParallelism(dop);
			}
		}
		else if (reduceInput instanceof JoinOperator &&
				((JoinOperator)reduceInput).getJoinHint() == JoinHint.REPARTITION_SORT_MERGE) {
			// We have a CoGroup operator whose input is processed by one or more sort-merge outer joins.
			// The DOPs of all outer joins must be adjusted.
			JoinOperator joinOp = (JoinOperator)reduceInput;
			while (joinOp != null && joinOp.getJoinHint() == JoinHint.REPARTITION_SORT_MERGE) {

				joinOp.setParallelism(dop);
				DataSet leftJoinInput = joinOp.getInput1();
				if (leftJoinInput instanceof JoinOperator) {
					joinOp = (JoinOperator)leftJoinInput;
				}
				else {
					joinOp = null;
				}
			}
		}
	}


	private DataSet translateMap(DataSet input, FlowNode node) {

		Fields outFields = getOutScope(node).getOutValuesFields();
		registerKryoTypes(outFields);

		int dop = ((Operator)input).getParallelism();

		return input
				.mapPartition(new EachMapper(node))
				.returns(new TupleTypeInfo(outFields))
				.withParameters(this.getFlinkNodeConfig(node))
				.setParallelism(dop)
				.name("map-" + node.getID());

	}

	private DataSet prepareGroupByInput(List> inputs, FlowNode node) {

		DataSet merged = null;

		for(int i=0; i input = inputs.get(i);

			if(merged == null) {
				merged = input;
			}
			else {
				merged = merged
						.union(input);
			}
		}

		return merged;
	}

	private DataSet translateGroupBy(DataSet input, FlowNode node, int dop) {

		GroupBy groupBy = (GroupBy) node.getSourceElements().iterator().next();

		Scope outScope = getOutScope(node);
		List inScopes = getInputScopes(node, groupBy);

		Fields outFields;
		if(outScope.isEvery()) {
			outFields = outScope.getOutGroupingFields();
		}
		else {
			outFields = outScope.getOutValuesFields();
		}
		registerKryoTypes(outFields);

		// get input scope
		Scope inScope = inScopes.get(0);

		// get grouping keys
		Fields groupKeyFields = groupBy.getKeySelectors().get(inScope.getName());
		// get group sorting keys
		Fields sortKeyFields = groupBy.getSortingSelectors().get(inScope.getName());

		String[] groupKeys = registerKeyFields(input, groupKeyFields);
		String[] sortKeys = null;
		if (sortKeyFields != null) {
			sortKeys = registerKeyFields(input, sortKeyFields);
		}
		Order sortOrder = groupBy.isSortReversed() ? Order.DESCENDING : Order.ASCENDING;

		if(sortOrder == Order.DESCENDING) {
			// translate groupBy with inverse sort order
			return translateInverseSortedGroupBy(input, node, dop, groupKeys, sortKeys, outFields);
		}
		else if(groupKeys == null || groupKeys.length == 0) {
			// translate key-less (global) groupBy
			return translateGlobalGroupBy(input, node, dop, sortKeys, sortOrder, outFields);
		}
		else {

			UnsortedGrouping grouping = input
					.groupBy(groupKeys);

			if(sortKeys != null && sortKeys.length > 0) {
				// translate groupBy with group sorting

				SortedGrouping sortedGrouping = grouping
						.sortGroup(sortKeys[0], Order.ASCENDING);
				for(int i=1; i translateGlobalGroupBy(DataSet input, FlowNode node, int dop,
													String[] sortKeys, Order sortOrder, Fields outFields) {

		DataSet result = input;

		// sort on sorting keys if necessary
		if(sortKeys != null && sortKeys.length > 0) {

			result = result
					.sortPartition(sortKeys[0], sortOrder)
					.setParallelism(1)
					.name("reduce-"+ node.getID());
			for(int i=1; i translateInverseSortedGroupBy(DataSet input, FlowNode node, int dop,
															String[] groupKeys, String[] sortKeys, Fields outFields) {

		DataSet result = input;

		// hash partition and sort on grouping keys if necessary
		if(groupKeys != null && groupKeys.length > 0) {
			// hash partition
			result = result
					.partitionByHash(groupKeys)
					.setParallelism(dop)
					.name("reduce-" + node.getID());

			// sort on grouping keys
			result = result
					.sortPartition(groupKeys[0], Order.DESCENDING)
					.setParallelism(dop)
					.name("reduce-" + node.getID());
			for(int i=1; i 0) {

			result = result
					.sortPartition(sortKeys[0], Order.DESCENDING)
					.setParallelism(dop)
					.name("reduce-" + node.getID());
			for(int i=1; i translateMerge(List> inputs, FlowNode node) {

		DataSet unioned = null;
		TypeInformation type = null;

		int maxDop = -1;

		for(DataSet input : inputs) {
			maxDop = Math.max(maxDop, ((Operator)input).getParallelism());
			if(unioned == null) {
				unioned = input;
				type = input.getType();
			}
			else {
				unioned = unioned.union(input);
			}
		}
		return unioned.map(new IdMapper())
				.returns(type)
				.setParallelism(maxDop);

	}

	private DataSet prepareCoGroupInput(List> inputs, FlowNode node, int dop) {

		CoGroup coGroup = (CoGroup)getSingle(node.getSinkElements());

		Joiner joiner = coGroup.getJoiner();

		int numJoinInputs = coGroup.isSelfJoin() ? coGroup.getNumSelfJoins() + 1 : inputs.size();

		Fields[] inputFields = new Fields[numJoinInputs];
		Fields[] keyFields = new Fields[numJoinInputs];
		String[][] flinkKeys = new String[numJoinInputs][];
		List> joinInputs = computeSpliceInputsFieldsKeys(coGroup, node, inputs, inputFields, keyFields, flinkKeys);

		if(joiner.getClass().equals(InnerJoin.class)) {
			if(!keyFields[0].isNone()) {
				return prepareFullOuterCoGroupInput(joinInputs, node, inputFields, keyFields, flinkKeys, dop);
			}
			else {
				// Cartesian product
				return prepareInnerCrossInput(joinInputs, node, inputFields, dop);
			}
		}
		else if(joiner.getClass().equals(BufferJoin.class)) {
			return prepareBufferCoGroupInput(joinInputs, node, inputFields, keyFields, flinkKeys, dop);
		}
		else {
			return prepareFullOuterCoGroupInput(joinInputs, node, inputFields, keyFields, flinkKeys, dop);
		}

	}

	private DataSet> prepareFullOuterCoGroupInput(List> inputs,
						FlowNode node, Fields[] inputFields, Fields[] keyFields, String[][] flinkKeys, int dop) {

		int numJoinInputs = inputs.size();

		TupleTypeInfo keysTypeInfo = inputFields[0].isDefined() ?
				new TupleTypeInfo(inputFields[0].select(keyFields[0])) :
				new TupleTypeInfo(Fields.UNKNOWN);
		keysTypeInfo.registerKeyFields(keyFields[0]);

		TypeInformation> tupleJoinListsTypeInfo =
				new org.apache.flink.api.java.typeutils.TupleTypeInfo<>(
						keysTypeInfo,
						new TupleArrayTypeInfo(numJoinInputs, Arrays.copyOf(inputFields, 2))
				);

		String[] listKeys = new String[flinkKeys[0].length];
		String[] listKeysFwd = new String[flinkKeys[0].length];

		for(int i=0; i "+listKeys[i];
		}

		// first outer join with CoGroup
		DataSet> tupleJoinLists = inputs.get(0)
				.fullOuterJoin(inputs.get(1), JoinHint.REPARTITION_SORT_MERGE)
				.where(flinkKeys[0]).equalTo(flinkKeys[1])
				.with(new TupleOuterJoiner(numJoinInputs,
						inputFields[0], keyFields[0],
						inputFields[1], keyFields[1]))
				.returns(tupleJoinListsTypeInfo)
				.withForwardedFieldsFirst(listKeysFwd)
				.setParallelism(dop)
				.name("coGroup-" + node.getID());

		// further outer joins with CoGroup
		for (int i = 2; i < inputs.size(); i++) {

			tupleJoinListsTypeInfo =
					new org.apache.flink.api.java.typeutils.TupleTypeInfo<>(
							keysTypeInfo,
							new TupleArrayTypeInfo(numJoinInputs, Arrays.copyOf(inputFields, i+1))
					);

			tupleJoinLists = tupleJoinLists
					.fullOuterJoin(inputs.get(i), JoinHint.REPARTITION_SORT_MERGE)
					.where(listKeys).equalTo(flinkKeys[i])
					.with(new TupleAppendOuterJoiner(i, numJoinInputs, inputFields[i], keyFields[i]))
					.returns(tupleJoinListsTypeInfo)
					.withForwardedFieldsFirst(listKeys)
					.setParallelism(dop)
					.name("coGroup-" + node.getID());
		}

		return tupleJoinLists;

	}

	private DataSet> prepareInnerCrossInput(List> inputs, FlowNode node, Fields[] inputFields, int dop) {

		int numJoinInputs = inputs.size();

		TypeInformation> tupleJoinListsTypeInfo =
				new org.apache.flink.api.java.typeutils.TupleTypeInfo<>(
						new TupleTypeInfo(Fields.UNKNOWN),
						new TupleArrayTypeInfo(numJoinInputs, Arrays.copyOf(inputFields, 1))
				);

		int mapDop = ((Operator)inputs.get(0)).getParallelism();

		// prepare tuple list for join
		DataSet> tupleJoinLists = inputs.get(0)
				.map(new JoinPrepareMapper(numJoinInputs, null, null))
				.returns(tupleJoinListsTypeInfo)
				.setParallelism(mapDop)
				.name("coGroup-" + node.getID());

		for (int i = 1; i < inputs.size(); i++) {

			tupleJoinListsTypeInfo =
					new org.apache.flink.api.java.typeutils.TupleTypeInfo<>(
							new TupleTypeInfo(Fields.UNKNOWN),
							new TupleArrayTypeInfo(numJoinInputs, Arrays.copyOf(inputFields, i+1))
					);

			tupleJoinLists = tupleJoinLists.crossWithTiny(inputs.get(i))
					.with(new TupleAppendCrosser(i))
					.returns(tupleJoinListsTypeInfo)
					.setParallelism(dop)
					.name("coGroup-" + node.getID());
		}

		return tupleJoinLists;
	}

	private DataSet> prepareBufferCoGroupInput(List> inputs,
						FlowNode node, Fields[] inputFields, Fields[] keyFields, String[][] flinkKeys, int dop) {

		DataSet> coGroupInput = null;

		for(int i=0; i input = inputs.get(i);

			// get keys
			int[] keyPos = inputFields[i].getPos(keyFields[i]);

			if(keyFields[i].isNone()) {
				// set default key
				keyFields[i] = new Fields("defaultKey");
			}

			TupleTypeInfo keysTypeInfo = inputFields[i].isDefined() ?
					new TupleTypeInfo(inputFields[i].select(keyFields[i])) :
					new TupleTypeInfo(Fields.UNKNOWN);

			TypeInformation> keyedType =
					new org.apache.flink.api.java.typeutils.TupleTypeInfo<>(
							keysTypeInfo,
							BasicTypeInfo.INT_TYPE_INFO,
							new TupleTypeInfo(inputFields[i])
			);

			int inputDop = ((Operator)input).getParallelism();

			// add mapper
			DataSet> keyedInput = input
					.map(new BufferJoinKeyExtractor(i, keyPos))
					.returns(keyedType)
					.setParallelism(inputDop)
					.name("coGroup-" + node.getID());

			// add to groupByInput
			if(coGroupInput == null) {
				coGroupInput = keyedInput;
			}
			else {
				coGroupInput = coGroupInput
						.union(keyedInput);
			}
		}

		return coGroupInput;
	}

	private DataSet translateCoGroup(DataSet input, FlowNode node, int dop) {

		CoGroup coGroup = (CoGroup)getSingle(node.getSourceElements());

		// get out fields of node
		Scope outScope = getOutScope(node);
		Fields outFields;
		if(outScope.isEvery()) {
			outFields = outScope.getOutGroupingFields();
		}
		else {
			outFields = outScope.getOutValuesFields();
		}
		registerKryoTypes(outFields);

		// get key and value fields of inputs
		List inScopes = getInputScopes(node, coGroup);
		Fields keyFields = coGroup.getKeySelectors().get(inScopes.get(0).getName());

		Joiner joiner = coGroup.getJoiner();

		if(!(joiner instanceof BufferJoin)) {
			if (keyFields != Fields.NONE) {

				String[] groupingKeys = new String[keyFields.size()];
				for (int i = 0; i < groupingKeys.length; i++) {
					groupingKeys[i] = "f0." + i;
				}

				DataSet joinResult = ((DataSet>) input)
						.groupBy(groupingKeys)
						.reduceGroup(new CoGroupReducer(node))
						.withParameters(this.getFlinkNodeConfig(node))
						.setParallelism(dop)
						.returns(new TupleTypeInfo(outFields))
						.name("cogroup-" + node.getID());

				return joinResult;
			} else {
				DataSet joinResult = ((DataSet>) input)
						.reduceGroup(new CoGroupReducer(node))
						.withParameters(this.getFlinkNodeConfig(node))
						.setParallelism(1)
						.returns(new TupleTypeInfo(outFields))
						.name("cogroup-" + node.getID());

				return joinResult;
			}
		}
		else {
			// Buffer Join
			if (keyFields != Fields.NONE) {

				return ((DataSet>) input)
						.groupBy("f0.*")
						.sortGroup(1, Order.DESCENDING)
						.reduceGroup(new CoGroupBufferReducer(node))
						.withParameters(this.getFlinkNodeConfig(node))
						.setParallelism(dop)
						.returns(new TupleTypeInfo(outFields))
						.name("coGroup-" + node.getID());
			}
			else {
				return ((DataSet>) input)
						.sortPartition(1, Order.DESCENDING)
						.setParallelism(1)
						.reduceGroup(new CoGroupBufferReducer(node))
						.withParameters(this.getFlinkNodeConfig(node))
						.setParallelism(1)
						.returns(new TupleTypeInfo(outFields))
						.name("coGroup-" + node.getID());
			}
		}
	}

	private DataSet translateHashJoin(List> inputs, FlowNode node) {

		HashJoin hashJoin = (HashJoin) getCommonSuccessor(node.getSourceElements(), node);
		Joiner joiner = hashJoin.getJoiner();

		// check if joiner is a Scalding WrappedJoiner and
		//   try to extract the joiner which is wrapped inside
		if (joiner.getClass().getName().equals("com.twitter.scalding.WrappedJoiner")) {
			try {
				Field joinerField = joiner.getClass().getDeclaredField("joiner");
				joinerField.setAccessible(true);
				joiner = (Joiner)joinerField.get(joiner);
			}
			catch(NoSuchFieldException | IllegalAccessException nsfe) {
				nsfe.printStackTrace();
				LOG.warn("Could not extract joiner from Scalding's WrappedJoiner. " +
						"Will continue without extracting joiner.");
			}
		}

		int numJoinInputs = hashJoin.isSelfJoin() ? hashJoin.getNumSelfJoins() + 1 : inputs.size();

		Fields[] inputFields = new Fields[numJoinInputs];
		Fields[] keyFields = new Fields[numJoinInputs];
		String[][] flinkKeys = new String[numJoinInputs][];

		List> joinInputs = computeSpliceInputsFieldsKeys(hashJoin, node, inputs, inputFields, keyFields, flinkKeys);

		if(keyFields[0].isNone()) {
			// Cartesian product
			return translateInnerCrossProduct(node, joinInputs);
		}
		else if(joiner.getClass().equals(InnerJoin.class)) {
			// inner join with keys
			return translateInnerHashJoin(node, joinInputs, inputFields, keyFields, flinkKeys);
		}
		else if (joiner.getClass().equals(LeftJoin.class)) {
			return translateLeftHashJoin(node, joinInputs, inputFields, keyFields, flinkKeys);
		}
		else {
			System.out.println(joiner.getClass().getName());
			throw new FlowException("HashJoin does only support InnerJoin and LeftJoin but is " +
					joiner.getClass().getName());
		}
	}

	private DataSet translateInnerHashJoin(FlowNode node, List> inputs, Fields[] inputFields, Fields[] keyFields, String[][] flinkKeys) {

		int numJoinInputs = inputs.size();

		// get out fields of node
		Scope outScope = getOutScope(node);
		Fields outFields;
		if (outScope.isEvery()) {
			outFields = outScope.getOutGroupingFields();
		} else {
			outFields = outScope.getOutValuesFields();
		}
		registerKryoTypes(outFields);

		int probeSideDOP = ((Operator)inputs.get(0)).getParallelism();

		if(numJoinInputs == 2) {
			// binary join

			return inputs.get(0).join(inputs.get(1), JoinHint.BROADCAST_HASH_SECOND)
					.where(flinkKeys[0]).equalTo(flinkKeys[1])
					.with(new BinaryHashJoinJoiner(node, inputFields[0], keyFields[0]))
					.withParameters(this.getFlinkNodeConfig(node))
					.setParallelism(probeSideDOP)
					.returns(new TupleTypeInfo(outFields))
					.name("hashjoin-" + node.getID());

		}
		else {
			// nary join

			TupleTypeInfo keysTypeInfo = inputFields[0].isDefined() ?
					new TupleTypeInfo(inputFields[0].select(keyFields[0])) :
					new TupleTypeInfo(Fields.UNKNOWN);
			keysTypeInfo.registerKeyFields(keyFields[0]);


			TypeInformation> tupleJoinListsTypeInfo =
					new org.apache.flink.api.java.typeutils.TupleTypeInfo<>(
							keysTypeInfo,
							new TupleArrayTypeInfo(numJoinInputs-1, Arrays.copyOf(inputFields, 1))
					);

			int mapDop = ((Operator) inputs.get(0)).getParallelism();

			// prepare tuple list for join
			DataSet> tupleJoinLists = inputs.get(0)
					.map(new JoinPrepareMapper(numJoinInputs - 1, inputFields[0], keyFields[0]))
					.returns(tupleJoinListsTypeInfo)
					.setParallelism(mapDop)
					.name("hashjoin-" + node.getID());

			for (int i = 0; i < flinkKeys[0].length; i++) {
				flinkKeys[0][i] = "f0." + i;
			}

			// join all inputs except last
			for (int i = 1; i < inputs.size()-1; i++) {

				tupleJoinListsTypeInfo =
						new org.apache.flink.api.java.typeutils.TupleTypeInfo<>(
								keysTypeInfo,
								new TupleArrayTypeInfo(numJoinInputs-1, Arrays.copyOf(inputFields, i+1))
						);

				tupleJoinLists = tupleJoinLists.join(inputs.get(i), JoinHint.BROADCAST_HASH_SECOND)
						.where(flinkKeys[0]).equalTo(flinkKeys[i])
						.with(new TupleAppendJoiner(i))
						.returns(tupleJoinListsTypeInfo)
						.withForwardedFieldsFirst(flinkKeys[0])
						.setParallelism(probeSideDOP)
						.name("hashjoin-" + node.getID());
			}

			// join last input
			return tupleJoinLists.join(inputs.get(numJoinInputs-1), JoinHint.BROADCAST_HASH_SECOND)
					.where(flinkKeys[0]).equalTo(flinkKeys[numJoinInputs-1])
					.with(new NaryHashJoinJoiner(node, numJoinInputs))
					.withParameters(this.getFlinkNodeConfig(node))
					.setParallelism(probeSideDOP)
					.returns(new TupleTypeInfo(outFields))
					.name("hashjoin-" + node.getID());
		}
	}

	private DataSet translateLeftHashJoin(FlowNode node, List> inputs, Fields[] inputFields, Fields[] keyFields, String[][] flinkKeys) {

		int numJoinInputs = inputs.size();

		// get out fields of node
		Scope outScope = getOutScope(node);
		Fields outFields;
		if (outScope.isEvery()) {
			outFields = outScope.getOutGroupingFields();
		} else {
			outFields = outScope.getOutValuesFields();
		}
		registerKryoTypes(outFields);

		int probeSideDOP = ((Operator)inputs.get(0)).getParallelism();

		if(numJoinInputs == 2) {
			// binary join

			return inputs.get(0)
					.leftOuterJoin(inputs.get(1), JoinHint.BROADCAST_HASH_SECOND)
					.where(flinkKeys[0]).equalTo(flinkKeys[1])
					.with(new BinaryHashJoinJoiner(node, inputFields[0], keyFields[0]))
					.withParameters(this.getFlinkNodeConfig(node))
					.setParallelism(probeSideDOP)
					.returns(new TupleTypeInfo(outFields))
					.name("hashjoin-" + node.getID());

		}
		else {
			// nary join

			TupleTypeInfo keysTypeInfo = inputFields[0].isDefined() ?
					new TupleTypeInfo(inputFields[0].select(keyFields[0])) :
					new TupleTypeInfo(Fields.UNKNOWN);
			keysTypeInfo.registerKeyFields(keyFields[0]);


			TypeInformation> tupleJoinListsTypeInfo =
					new org.apache.flink.api.java.typeutils.TupleTypeInfo<>(
							keysTypeInfo,
							new TupleArrayTypeInfo(numJoinInputs-1, Arrays.copyOf(inputFields, 1))
					);

			// prepare tuple list for join
			DataSet> tupleJoinLists = inputs.get(0)
					.map(new JoinPrepareMapper(numJoinInputs - 1, inputFields[0], keyFields[0]))
					.returns(tupleJoinListsTypeInfo)
					.setParallelism(probeSideDOP)
					.name("hashjoin-" + node.getID());

			for (int i = 0; i < flinkKeys[0].length; i++) {
				flinkKeys[0][i] = "f0." + i;
			}

			// join all inputs except last
			for (int i = 1; i < inputs.size()-1; i++) {

				tupleJoinListsTypeInfo =
						new org.apache.flink.api.java.typeutils.TupleTypeInfo<>(
								keysTypeInfo,
								new TupleArrayTypeInfo(numJoinInputs-1, Arrays.copyOf(inputFields, i+1))
						);

				tupleJoinLists = tupleJoinLists
						.join(inputs.get(i), JoinHint.BROADCAST_HASH_SECOND)
						.where(flinkKeys[0]).equalTo(flinkKeys[i])
						.with(new TupleAppendJoiner(i))
						.returns(tupleJoinListsTypeInfo)
						.withForwardedFieldsFirst(flinkKeys[0])
						.setParallelism(probeSideDOP)
						.name("hashjoin-" + node.getID());
			}

			// join last input
			return tupleJoinLists
					.leftOuterJoin(inputs.get(numJoinInputs-1), JoinHint.BROADCAST_HASH_SECOND)
					.where(flinkKeys[0]).equalTo(flinkKeys[numJoinInputs-1])
					.with(new NaryHashJoinJoiner(node, numJoinInputs))
					.withParameters(this.getFlinkNodeConfig(node))
					.setParallelism(probeSideDOP)
					.returns(new TupleTypeInfo(outFields))
					.name("hashjoin-" + node.getID());
		}
	}

	private DataSet translateInnerCrossProduct(FlowNode node, List> inputs) {

		int numJoinInputs = inputs.size();

		// get out fields of node
		Scope outScope = getOutScope(node);
		Fields outFields;
		if (outScope.isEvery()) {
			outFields = outScope.getOutGroupingFields();
		} else {
			outFields = outScope.getOutValuesFields();
		}
		registerKryoTypes(outFields);

		int probeSideDOP = ((Operator)inputs.get(0)).getParallelism();

		TypeInformation> tupleJoinListsTypeInfo =
				new org.apache.flink.api.java.typeutils.TupleTypeInfo<>(
						new TupleTypeInfo(Fields.UNKNOWN),
						ObjectArrayTypeInfo.getInfoFor(new TupleTypeInfo(Fields.UNKNOWN))
				);

		// prepare tuple list for join
		DataSet> tupleJoinLists = inputs.get(0)
				.map(new JoinPrepareMapper(numJoinInputs, null, null))
				.returns(tupleJoinListsTypeInfo)
				.setParallelism(probeSideDOP)
				.name("hashjoin-" + node.getID());

		for (int i = 1; i < inputs.size(); i++) {
			tupleJoinLists = tupleJoinLists.crossWithTiny(inputs.get(i))
					.with(new TupleAppendCrosser(i))
					.returns(tupleJoinListsTypeInfo)
					.setParallelism(probeSideDOP)
					.name("hashjoin-" + node.getID());
		}

		return tupleJoinLists
				.mapPartition(new HashJoinMapper(node))
				.withParameters(this.getFlinkNodeConfig(node))
				.setParallelism(probeSideDOP)
				.returns(new TupleTypeInfo(outFields))
				.name("hashjoin-" + node.getID());

	}

	private List> computeSpliceInputsFieldsKeys(Splice splice, FlowNode node, List> inputs, Fields[] inputFields, Fields[] keyFields, String[][] flinkKeys) {

		int numJoinInputs = splice.isSelfJoin() ? splice.getNumSelfJoins() + 1 : inputs.size();
		List inScopes = getInputScopes(node, splice);
		List> inputs2;

		// collect key and value fields of inputs
		if(!splice.isSelfJoin()) {
			// regular join with different inputs

			for (int i = 0; i < numJoinInputs; i++) {
				// get input scope
				Scope inScope = inScopes.get(i);

				// get join key fields
				inputFields[i] = ((TupleTypeInfo)inputs.get(i).getType()).getSchema();
				keyFields[i] = splice.getKeySelectors().get(inScope.getName());
				flinkKeys[i] = registerKeyFields(inputs.get(i), keyFields[i]);
			}

			inputs2 = inputs;
		}
		else {
			// self join

			Scope inScope = inScopes.get(0);
			// get join key fields
			inputFields[0] = ((TupleTypeInfo)inputs.get(0).getType()).getSchema();
			keyFields[0] = splice.getKeySelectors().get(inScope.getName());
			flinkKeys[0] = registerKeyFields(inputs.get(0), keyFields[0]);

			for (int i = 1; i < numJoinInputs; i++) {
				inputFields[i] = inputFields[0];
				keyFields[i] = keyFields[0];
				flinkKeys[i] = Arrays.copyOf(flinkKeys[0], flinkKeys[0].length);
			}

			// duplicate self join input to treat it like a regular join
			inputs2 = new ArrayList<>(numJoinInputs);
			for(int i=0; i getInputScopes(FlowNode node, Splice splice) {

		Pipe[] inputs = splice.getPrevious();
		List inScopes = new ArrayList<>(inputs.length);
		for(Pipe input : inputs) {
			boolean found = false;
			for (Scope inScope : node.getPreviousScopes(splice)) {
				if(inScope.getName().equals(input.getName())) {
					inScopes.add(inScope);
					found = true;
					break;
				}
			}
			if(!found) {
				throw new RuntimeException("Input scope was not found");
			}
		}

		return inScopes;
	}

	private FlowElement[] getNodeInputsInOrder(FlowNode node, Splice splice) {

		Map posMap = splice.getPipePos();
		FlowElement[] spliceInputs = new FlowElement[posMap.size()];
		ElementGraph eg = node.getElementGraph();

		for(FlowElement nodeSource : getSources(node)) {
			int idx = posMap.get(eg.getEdge(nodeSource, splice).getName());
			spliceInputs[idx] = nodeSource;
		}

		return spliceInputs;
	}


	private Set getSources(FlowNode node) {
		return node.getSourceElements();
	}

	private Set getSinks(FlowNode node) {
		return node.getSinkElements();
	}

	private Set getInnerElements(FlowNode node) {
		Set inner = new HashSet<>(node.getElementGraph().vertexSet());
		inner.removeAll(getSources(node));
		inner.removeAll(getSinks(node));
		Set toRemove = new HashSet<>();
		for(FlowElement e : inner) {
			if(e instanceof Extent) {
				toRemove.add(e);
			}
		}
		inner.removeAll(toRemove);
		return inner;
	}

	private Scope getOutScope(FlowNode node) {

		Set nodeSinks = node.getSinkElements();
		if(nodeSinks.size() != 1) {
			throw new RuntimeException("Only nodes with one output supported right now");
		}
		FlowElement sink =  nodeSinks.iterator().next();

		Collection outScopes = (Collection) node.getPreviousScopes(sink);
		if(outScopes.size() != 1) {
			throw new RuntimeException("Only one incoming scope for last node of mapper allowed");
		}
		return outScopes.iterator().next();
	}

	private boolean allOfType(Set set, Class type) {

		for(FlowElement e : set) {
			if(!(type.isInstance(e))) {
				return false;
			}
		}
		return true;
	}

	private FlowElement getCommonSuccessor(Set set, FlowNode node) {

		ElementGraph graph = node.getElementGraph();
		FlowElement successor = null;
		for(FlowElement e : set) {
			List successors = graph.successorListOf(e);
			if(successors.size() > 1) {
				return null;
			}
			else {
				if(successor == null) {
					successor = successors.get(0);
				}
				else if(successor != successors.get(0)){
					return null;
				}
			}
		}
		return successor;
	}

	private  X getSingle(Set set) {
		if(set.size() != 1) {
			throw new RuntimeException("Set size > 1");
		}
		return set.iterator().next();
	}

	private String[] registerKeyFields(DataSet input, Fields keyFields) {
		return ((TupleTypeInfo)input.getType()).registerKeyFields(keyFields);
	}

	private void registerKryoTypes(Fields fields) {

		if(fields.hasTypes()) {
			Class[] fieldTypeClasses = fields.getTypesClasses();
			for(Class fieldTypeClass : fieldTypeClasses) {
				if(!fieldTypeClass.isPrimitive() &&
						!fieldTypeClass.equals(String.class) &&
						!Writable.class.isAssignableFrom(fieldTypeClass)) {
					// register type if it is neither a primitive, String, or Writable

					env.getConfig().registerKryoType(fieldTypeClass);
				}
			}
		}

	}

	private org.apache.flink.configuration.Configuration getFlinkNodeConfig(FlowNode node) {
		return FlinkConfigConverter.toFlinkConfig(this.getNodeConfig(node));
	}

	private Configuration getNodeConfig(FlowNode node) {

		Configuration nodeConfig = HadoopUtil.copyConfiguration(this.getConfig());
		ConfigurationSetter configSetter = new ConfigurationSetter(nodeConfig);
		this.initConfFromNodeConfigDef(node.getElementGraph(), configSetter);
		this.initConfFromStepConfigDef(configSetter);
		nodeConfig.set("cascading.flow.node.num", Integer.toString(node.getOrdinal()));

		return nodeConfig;
	}

	private static class ConfigurationSetter implements ConfigDef.Setter
	{
		private final Configuration conf;

		public ConfigurationSetter( Configuration conf )
		{
			this.conf = conf;
		}

		@Override
		public String set( String key, String value ) {
			String oldValue = get( key );
			conf.set( key, value );

			return oldValue;
		}

		@Override
		public String update( String key, String value ) {
			String oldValue = get( key );

			if( oldValue == null ) {
				conf.set(key, value);
			}
			else if( !oldValue.contains( value ) ) {
				conf.set(key, oldValue + "," + value);
			}

			return oldValue;
		}

		@Override
		public String get( String key ) {
			String value = conf.get( key );

			if( value == null || value.isEmpty() ) {
				return null;
			}

			return value;
		}
	}

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy