All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.datastax.driver.core.VIntCoding Maven / Gradle / Ivy

Go to download

A driver for DataStax Enterprise (DSE) and Apache Cassandra 1.2+ clusters that works exclusively with the Cassandra Query Language version 3 (CQL3) and Cassandra's binary protocol, supporting DSE-specific features such as geospatial types, DSE Graph and DSE authentication.

There is a newer version: 2.4.0
Show newest version
/*
 * Copyright DataStax, Inc.
 *
 * This software can be used solely with DataStax Enterprise. Please consult the license at
 * http://www.datastax.com/terms/datastax-dse-driver-license-terms
 */
package com.datastax.driver.core;

import io.netty.util.concurrent.FastThreadLocal;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

/**
 * Variable length encoding inspired from Google varints.
 *
 * 

* *

Cassandra vints are encoded with the most significant group first. The most significant byte * will contains the information about how many extra bytes need to be read as well as the most * significant bits of the integer. The number of extra bytes to read is encoded as 1 bits on the * left side. For example, if we need to read 3 more bytes the first byte will start with 1110. If * the encoded integer is 8 bytes long the vint will be encoded on 9 bytes and the first byte will * be: 11111111 * *

* *

Signed integer are (like protocol buffer varints) encoded using the ZigZag encoding so that * numbers with a small absolute value have a small vint encoded value too. */ class VIntCoding { private static long readUnsignedVInt(DataInput input) throws IOException { int firstByte = input.readByte(); // Bail out early if this is one byte, necessary or it fails later if (firstByte >= 0) return firstByte; int size = numberOfExtraBytesToRead(firstByte); long retval = firstByte & firstByteValueMask(size); for (int ii = 0; ii < size; ii++) { byte b = input.readByte(); retval <<= 8; retval |= b & 0xff; } return retval; } static long readVInt(DataInput input) throws IOException { return decodeZigZag64(readUnsignedVInt(input)); } // & this with the first byte to give the value part for a given extraBytesToRead encoded in the // byte private static int firstByteValueMask(int extraBytesToRead) { // by including the known 0bit in the mask, we can use this for encodeExtraBytesToRead return 0xff >> extraBytesToRead; } private static int encodeExtraBytesToRead(int extraBytesToRead) { // because we have an extra bit in the value mask, we just need to invert it return ~firstByteValueMask(extraBytesToRead); } private static int numberOfExtraBytesToRead(int firstByte) { // we count number of set upper bits; so if we simply invert all of the bits, we're golden // this is aided by the fact that we only work with negative numbers, so when upcast to an int // all // of the new upper bits are also set, so by inverting we set all of them to zero return Integer.numberOfLeadingZeros(~firstByte) - 24; } private static final FastThreadLocal encodingBuffer = new FastThreadLocal() { @Override public byte[] initialValue() { return new byte[9]; } }; private static void writeUnsignedVInt(long value, DataOutput output) throws IOException { int size = VIntCoding.computeUnsignedVIntSize(value); if (size == 1) { output.write((int) value); return; } output.write(VIntCoding.encodeVInt(value, size), 0, size); } private static byte[] encodeVInt(long value, int size) { byte encodingSpace[] = encodingBuffer.get(); int extraBytes = size - 1; for (int i = extraBytes; i >= 0; --i) { encodingSpace[i] = (byte) value; value >>= 8; } encodingSpace[0] |= encodeExtraBytesToRead(extraBytes); return encodingSpace; } static void writeVInt(long value, DataOutput output) throws IOException { writeUnsignedVInt(encodeZigZag64(value), output); } /** * Decode a ZigZag-encoded 64-bit value. ZigZag encodes signed integers into values that can be * efficiently encoded with varint. (Otherwise, negative values must be sign-extended to 64 bits * to be varint encoded, thus always taking 10 bytes on the wire.) * * @param n An unsigned 64-bit integer, stored in a signed int because Java has no explicit * unsigned support. * @return A signed 64-bit integer. */ private static long decodeZigZag64(final long n) { return (n >>> 1) ^ -(n & 1); } /** * Encode a ZigZag-encoded 64-bit value. ZigZag encodes signed integers into values that can be * efficiently encoded with varint. (Otherwise, negative values must be sign-extended to 64 bits * to be varint encoded, thus always taking 10 bytes on the wire.) * * @param n A signed 64-bit integer. * @return An unsigned 64-bit integer, stored in a signed int because Java has no explicit * unsigned support. */ private static long encodeZigZag64(final long n) { // Note: the right-shift must be arithmetic return (n << 1) ^ (n >> 63); } /** Compute the number of bytes that would be needed to encode a varint. */ static int computeVIntSize(final long param) { return computeUnsignedVIntSize(encodeZigZag64(param)); } /** Compute the number of bytes that would be needed to encode an unsigned varint. */ private static int computeUnsignedVIntSize(final long value) { int magnitude = Long.numberOfLeadingZeros( value | 1); // | with 1 to ensure magntiude <= 63, so (63 - 1) / 7 <= 8 return (639 - magnitude * 9) >> 6; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy