All Downloads are FREE. Search and download functionalities are using the official Maven repository.

dorkbox.util.MersenneTwisterFast Maven / Gradle / Ivy

There is a newer version: 1.48
Show newest version
package dorkbox.util;

import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.Serializable;

/**
 * 

MersenneTwister and MersenneTwisterFast

*

Version 20, based on version MT199937(99/10/29) * of the Mersenne Twister algorithm found at * * The Mersenne Twister Home Page, with the initialization * improved using the new 2002/1/26 initialization algorithm * By Sean Luke, October 2004. * *

MersenneTwister is a drop-in subclass replacement * for java.util.Random. It is properly synchronized and * can be used in a multithreaded environment. On modern VMs such * as HotSpot, it is approximately 1/3 slower than java.util.Random. * *

MersenneTwisterFast is not a subclass of java.util.Random. It has * the same public methods as Random does, however, and it is * algorithmically identical to MersenneTwister. MersenneTwisterFast * has hard-code inlined all of its methods directly, and made all of them * final (well, the ones of consequence anyway). Further, these * methods are not synchronized, so the same MersenneTwisterFast * instance cannot be shared by multiple threads. But all this helps * MersenneTwisterFast achieve well over twice the speed of MersenneTwister. * java.util.Random is about 1/3 slower than MersenneTwisterFast. * *

About the Mersenne Twister

*

This is a Java version of the C-program for MT19937: Integer version. * The MT19937 algorithm was created by Makoto Matsumoto and Takuji Nishimura, * who ask: "When you use this, send an email to: [email protected] * with an appropriate reference to your work". Indicate that this * is a translation of their algorithm into Java. * *

Reference. * Makato Matsumoto and Takuji Nishimura, * "Mersenne Twister: A 623-Dimensionally Equidistributed Uniform * Pseudo-Random Number Generator", * ACM Transactions on Modeling and. Computer Simulation, * Vol. 8, No. 1, January 1998, pp 3--30. * *

About this Version

* *

Changes since V19: nextFloat(boolean, boolean) now returns float, * not double. * *

Changes since V18: Removed old final declarations, which used to * potentially speed up the code, but no longer. * *

Changes since V17: Removed vestigial references to &= 0xffffffff * which stemmed from the original C code. The C code could not guarantee that * ints were 32 bit, hence the masks. The vestigial references in the Java * code were likely optimized out anyway. * *

Changes since V16: Added nextDouble(includeZero, includeOne) and * nextFloat(includeZero, includeOne) to allow for half-open, fully-closed, and * fully-open intervals. * *

Changes Since V15: Added serialVersionUID to quiet compiler warnings * from Sun's overly verbose compilers as of JDK 1.5. * *

Changes Since V14: made strictfp, with StrictMath.log and StrictMath.sqrt * in nextGaussian instead of Math.log and Math.sqrt. This is largely just to be safe, * as it presently makes no difference in the speed, correctness, or results of the * algorithm. * *

Changes Since V13: clone() method CloneNotSupportedException removed. * *

Changes Since V12: clone() method added. * *

Changes Since V11: stateEquals(...) method added. MersenneTwisterFast * is equal to other MersenneTwisterFasts with identical state; likewise * MersenneTwister is equal to other MersenneTwister with identical state. * This isn't equals(...) because that requires a contract of immutability * to compare by value. * *

Changes Since V10: A documentation error suggested that * setSeed(int[]) required an int[] array 624 long. In fact, the array * can be any non-zero length. The new version also checks for this fact. * *

Changes Since V9: readState(stream) and writeState(stream) * provided. * *

Changes Since V8: setSeed(int) was only using the first 28 bits * of the seed; it should have been 32 bits. For small-number seeds the * behavior is identical. * *

Changes Since V7: A documentation error in MersenneTwisterFast * (but not MersenneTwister) stated that nextDouble selects uniformly from * the full-open interval [0,1]. It does not. nextDouble's contract is * identical across MersenneTwisterFast, MersenneTwister, and java.util.Random, * namely, selection in the half-open interval [0,1). That is, 1.0 should * not be returned. A similar contract exists in nextFloat. * *

Changes Since V6: License has changed from LGPL to BSD. * New timing information to compare against * java.util.Random. Recent versions of HotSpot have helped Random increase * in speed to the point where it is faster than MersenneTwister but slower * than MersenneTwisterFast (which should be the case, as it's a less complex * algorithm but is synchronized). * *

Changes Since V5: New empty constructor made to work the same * as java.util.Random -- namely, it seeds based on the current time in * milliseconds. * *

Changes Since V4: New initialization algorithms. See * (see * http://www.math.keio.ac.jp/matumoto/MT2002/emt19937ar.html) * *

The MersenneTwister code is based on standard MT19937 C/C++ * code by Takuji Nishimura, * with suggestions from Topher Cooper and Marc Rieffel, July 1997. * The code was originally translated into Java by Michael Lecuyer, * January 1999, and the original code is Copyright (c) 1999 by Michael Lecuyer. * *

Java notes

* *

This implementation implements the bug fixes made * in Java 1.2's version of Random, which means it can be used with * earlier versions of Java. See * * the JDK 1.2 java.util.Random documentation for further documentation * on the random-number generation contracts made. Additionally, there's * an undocumented bug in the JDK java.util.Random.nextBytes() method, * which this code fixes. * *

Just like java.util.Random, this * generator accepts a long seed but doesn't use all of it. java.util.Random * uses 48 bits. The Mersenne Twister instead uses 32 bits (int size). * So it's best if your seed does not exceed the int range. * *

MersenneTwister can be used reliably * on JDK version 1.1.5 or above. Earlier Java versions have serious bugs in * java.util.Random; only MersenneTwisterFast (and not MersenneTwister nor * java.util.Random) should be used with them. * *

License

* * Copyright (c) 2003 by Sean Luke.
* Portions copyright (c) 1993 by Michael Lecuyer.
* All rights reserved.
* *

Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: *

    *
  • Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. *
  • Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. *
  • Neither the name of the copyright owners, their employers, nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. *
*

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * @version 20 */ // Note: this class is hard-inlined in all of its methods. This makes some of // the methods well-nigh unreadable in their complexity. In fact, the Mersenne // Twister is fairly easy code to understand: if you're trying to get a handle // on the code, I strongly suggest looking at MersenneTwister.java first. // -- Sean public strictfp class MersenneTwisterFast implements Serializable, Cloneable { // Serialization private static final long serialVersionUID = -8219700664442619525L; // locked // as of // Version // 15 // Period parameters private static final int N = 624; private static final int M = 397; private static final int MATRIX_A = 0x9908b0df; // private // static // final // * // constant // vector // a private static final int UPPER_MASK = 0x80000000; // most // significant // w-r // bits private static final int LOWER_MASK = 0x7fffffff; // least // significant // r // bits // Tempering parameters private static final int TEMPERING_MASK_B = 0x9d2c5680; private static final int TEMPERING_MASK_C = 0xefc60000; private int mt[]; // the // array // for // the // state // vector private int mti; // mti==N+1 // means // mt[N] // is // not // initialized private int mag01[]; // a good initial seed (of int size, though stored in a long) // private static final long GOOD_SEED = 4357; private double __nextNextGaussian; private boolean __haveNextNextGaussian; /* * We're overriding all internal data, to my knowledge, so this should be * okay */ @Override public Object clone() { try { MersenneTwisterFast f = (MersenneTwisterFast) super.clone(); f.mt = this.mt.clone(); f.mag01 = this.mag01.clone(); return f; } catch (CloneNotSupportedException e) { throw new InternalError(); } // should never happen } public boolean stateEquals(Object o) { if (o == this) { return true; } if (o == null || !(o instanceof MersenneTwisterFast)) { return false; } MersenneTwisterFast other = (MersenneTwisterFast) o; if (this.mti != other.mti) { return false; } for (int x = 0; x < this.mag01.length; x++) { if (this.mag01[x] != other.mag01[x]) { return false; } } for (int x = 0; x < this.mt.length; x++) { if (this.mt[x] != other.mt[x]) { return false; } } return true; } /** Reads the entire state of the MersenneTwister RNG from the stream */ public void readState(DataInputStream stream) throws IOException { int len = this.mt.length; for (int x = 0; x < len; x++) { this.mt[x] = stream.readInt(); } len = this.mag01.length; for (int x = 0; x < len; x++) { this.mag01[x] = stream.readInt(); } this.mti = stream.readInt(); this.__nextNextGaussian = stream.readDouble(); this.__haveNextNextGaussian = stream.readBoolean(); } /** Writes the entire state of the MersenneTwister RNG to the stream */ public void writeState(DataOutputStream stream) throws IOException { int len = this.mt.length; for (int x = 0; x < len; x++) { stream.writeInt(this.mt[x]); } len = this.mag01.length; for (int x = 0; x < len; x++) { stream.writeInt(this.mag01[x]); } stream.writeInt(this.mti); stream.writeDouble(this.__nextNextGaussian); stream.writeBoolean(this.__haveNextNextGaussian); } /** * Constructor using the default seed. */ public MersenneTwisterFast() { this(System.currentTimeMillis()); } /** * Constructor using a given seed. Though you pass this seed in as a long, * it's best to make sure it's actually an integer. * */ public MersenneTwisterFast(long seed) { setSeed(seed); } /** * Constructor using an array of integers as seed. Your array must have a * non-zero length. Only the first 624 integers in the array are used; if * the array is shorter than this then integers are repeatedly used in a * wrap-around fashion. */ public MersenneTwisterFast(int[] array) { setSeed(array); } /** * Initalize the pseudo random number generator. Don't pass in a long that's * bigger than an int (Mersenne Twister only uses the first 32 bits for its * seed). */ synchronized public void setSeed(long seed) { // Due to a bug in java.util.Random clear up to 1.2, we're // doing our own Gaussian variable. this.__haveNextNextGaussian = false; this.mt = new int[N]; this.mag01 = new int[2]; this.mag01[0] = 0x0; this.mag01[1] = MATRIX_A; this.mt[0] = (int) (seed & 0xffffffff); for (this.mti = 1; this.mti < N; this.mti++) { this.mt[this.mti] = 1812433253 * (this.mt[this.mti-1] ^ this.mt[this.mti-1] >>> 30) + this.mti; /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */ /* In the previous versions, MSBs of the seed affect */ /* only MSBs of the array mt[]. */ /* 2002/01/09 modified by Makoto Matsumoto */ // mt[mti] &= 0xffffffff; /* for >32 bit machines */ } } /** * Sets the seed of the MersenneTwister using an array of integers. Your * array must have a non-zero length. Only the first 624 integers in the * array are used; if the array is shorter than this then integers are * repeatedly used in a wrap-around fashion. */ synchronized public void setSeed(int[] array) { if (array.length == 0) { throw new IllegalArgumentException("Array length must be greater than zero"); } int i, j, k; setSeed(19650218); i = 1; j = 0; k = N > array.length ? N : array.length; for (; k != 0; k--) { this.mt[i] = (this.mt[i] ^ (this.mt[i-1] ^ this.mt[i-1] >>> 30) * 1664525) + array[j] + j; /* non linear */ // mt[i] &= 0xffffffff; /* for WORDSIZE > 32 machines */ i++; j++; if (i >= N) { this.mt[0] = this.mt[N - 1]; i = 1; } if (j >= array.length) { j = 0; } } for (k = N - 1; k != 0; k--) { this.mt[i] = (this.mt[i] ^ (this.mt[i - 1] ^ this.mt[i - 1] >>> 30) * 1566083941) - i; /* non linear */ // mt[i] &= 0xffffffff; /* for WORDSIZE > 32 machines */ i++; if (i >= N) { this.mt[0] = this.mt[N - 1]; i = 1; } } this.mt[0] = 0x80000000; /* MSB is 1; assuring non-zero initial array */ } public int nextInt() { int y; if (this.mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M] ^ y >>> 1 ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M - N] ^ y >>> 1 ^ mag01[y & 0x1]; } y = mt[N - 1] & UPPER_MASK | mt[0] & LOWER_MASK; mt[N - 1] = mt[M - 1] ^ y >>> 1 ^ mag01[y & 0x1]; this.mti = 0; } y = this.mt[this.mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= y << 7 & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= y << 15 & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= y >>> 18; // TEMPERING_SHIFT_L(y) return y; } public short nextShort() { int y; if (this.mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M] ^ y >>> 1 ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M - N] ^ y >>> 1 ^ mag01[y & 0x1]; } y = mt[N - 1] & UPPER_MASK | mt[0] & LOWER_MASK; mt[N - 1] = mt[M - 1] ^ y >>> 1 ^ mag01[y & 0x1]; this.mti = 0; } y = this.mt[this.mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= y << 7 & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= y << 15 & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= y >>> 18; // TEMPERING_SHIFT_L(y) return (short) (y >>> 16); } public char nextChar() { int y; if (this.mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M] ^ y >>> 1 ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M - N] ^ y >>> 1 ^ mag01[y & 0x1]; } y = mt[N - 1] & UPPER_MASK | mt[0] & LOWER_MASK; mt[N - 1] = mt[M - 1] ^ y >>> 1 ^ mag01[y & 0x1]; this.mti = 0; } y = this.mt[this.mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= y << 7 & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= y << 15 & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= y >>> 18; // TEMPERING_SHIFT_L(y) return (char) (y >>> 16); } public boolean nextBoolean() { int y; if (this.mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M] ^ y >>> 1 ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M - N] ^ y >>> 1 ^ mag01[y & 0x1]; } y = mt[N - 1] & UPPER_MASK | mt[0] & LOWER_MASK; mt[N - 1] = mt[M - 1] ^ y >>> 1 ^ mag01[y & 0x1]; this.mti = 0; } y = this.mt[this.mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= y << 7 & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= y << 15 & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= y >>> 18; // TEMPERING_SHIFT_L(y) return y >>> 31 != 0; } /** * This generates a coin flip with a probability probability of returning true, else returning false. * probability must be between 0.0 and 1.0, inclusive. Not as precise a random real event as * nextBoolean(double), but twice as fast. To explicitly use this, remember you may need to cast to float first. */ public boolean nextBoolean(float probability) { int y; if (probability < 0.0f || probability > 1.0f) { throw new IllegalArgumentException("probability must be between 0.0 and 1.0 inclusive."); } if (probability == 0.0f) { return false; // fix half-open issues } else if (probability == 1.0f) { return true; // fix half-open issues } if (this.mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M] ^ y >>> 1 ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M - N] ^ y >>> 1 ^ mag01[y & 0x1]; } y = mt[N - 1] & UPPER_MASK | mt[0] & LOWER_MASK; mt[N - 1] = mt[M - 1] ^ y >>> 1 ^ mag01[y & 0x1]; this.mti = 0; } y = this.mt[this.mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= y << 7 & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= y << 15 & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= y >>> 18; // TEMPERING_SHIFT_L(y) return (y >>> 8) / (float) (1 << 24) < probability; } /** * This generates a coin flip with a probability probability of returning true, else returning false. * probability must be between 0.0 and 1.0, inclusive. */ public boolean nextBoolean(double probability) { int y; int z; if (probability < 0.0 || probability > 1.0) { throw new IllegalArgumentException("probability must be between 0.0 and 1.0 inclusive."); } if (probability == 0.0) { return false; // fix half-open issues } else if (probability == 1.0) { return true; // fix half-open issues } if (this.mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M] ^ y >>> 1 ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M - N] ^ y >>> 1 ^ mag01[y & 0x1]; } y = mt[N - 1] & UPPER_MASK | mt[0] & LOWER_MASK; mt[N - 1] = mt[M - 1] ^ y >>> 1 ^ mag01[y & 0x1]; this.mti = 0; } y = this.mt[this.mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= y << 7 & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= y << 15 & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= y >>> 18; // TEMPERING_SHIFT_L(y) if (this.mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { z = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M] ^ z >>> 1 ^ mag01[z & 0x1]; } for (; kk < N - 1; kk++) { z = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M - N] ^ z >>> 1 ^ mag01[z & 0x1]; } z = mt[N - 1] & UPPER_MASK | mt[0] & LOWER_MASK; mt[N - 1] = mt[M - 1] ^ z >>> 1 ^ mag01[z & 0x1]; this.mti = 0; } z = this.mt[this.mti++]; z ^= z >>> 11; // TEMPERING_SHIFT_U(z) z ^= z << 7 & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(z) z ^= z << 15 & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(z) z ^= z >>> 18; // TEMPERING_SHIFT_L(z) /* derived from nextDouble documentation in jdk 1.2 docs, see top */ return (((long) (y >>> 6) << 27) + (z >>> 5)) / (double) (1L << 53) < probability; } public byte nextByte() { int y; if (this.mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M] ^ y >>> 1 ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M - N] ^ y >>> 1 ^ mag01[y & 0x1]; } y = mt[N - 1] & UPPER_MASK | mt[0] & LOWER_MASK; mt[N - 1] = mt[M - 1] ^ y >>> 1 ^ mag01[y & 0x1]; this.mti = 0; } y = this.mt[this.mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= y << 7 & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= y << 15 & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= y >>> 18; // TEMPERING_SHIFT_L(y) return (byte) (y >>> 24); } public void nextBytes(byte[] bytes) { int y; for (int x = 0; x < bytes.length; x++) { if (this.mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M] ^ y >>> 1 ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M - N] ^ y >>> 1 ^ mag01[y & 0x1]; } y = mt[N - 1] & UPPER_MASK | mt[0] & LOWER_MASK; mt[N - 1] = mt[M - 1] ^ y >>> 1 ^ mag01[y & 0x1]; this.mti = 0; } y = this.mt[this.mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= y << 7 & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= y << 15 & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= y >>> 18; // TEMPERING_SHIFT_L(y) bytes[x] = (byte) (y >>> 24); } } public long nextLong() { int y; int z; if (this.mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M] ^ y >>> 1 ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M - N] ^ y >>> 1 ^ mag01[y & 0x1]; } y = mt[N - 1] & UPPER_MASK | mt[0] & LOWER_MASK; mt[N - 1] = mt[M - 1] ^ y >>> 1 ^ mag01[y & 0x1]; this.mti = 0; } y = this.mt[this.mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= y << 7 & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= y << 15 & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= y >>> 18; // TEMPERING_SHIFT_L(y) if (this.mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { z = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M] ^ z >>> 1 ^ mag01[z & 0x1]; } for (; kk < N - 1; kk++) { z = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M - N] ^ z >>> 1 ^ mag01[z & 0x1]; } z = mt[N - 1] & UPPER_MASK | mt[0] & LOWER_MASK; mt[N - 1] = mt[M - 1] ^ z >>> 1 ^ mag01[z & 0x1]; this.mti = 0; } z = this.mt[this.mti++]; z ^= z >>> 11; // TEMPERING_SHIFT_U(z) z ^= z << 7 & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(z) z ^= z << 15 & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(z) z ^= z >>> 18; // TEMPERING_SHIFT_L(z) return ((long) y << 32) + z; } /** * Returns a long drawn uniformly from 0 to n-1. Suffice it to say, n must be > 0, or an IllegalArgumentException is * raised. */ public long nextLong(long n) { if (n <= 0) { throw new IllegalArgumentException("n must be positive, got: " + n); } long bits, val; do { int y; int z; if (this.mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M] ^ y >>> 1 ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M - N] ^ y >>> 1 ^ mag01[y & 0x1]; } y = mt[N - 1] & UPPER_MASK | mt[0] & LOWER_MASK; mt[N - 1] = mt[M - 1] ^ y >>> 1 ^ mag01[y & 0x1]; this.mti = 0; } y = this.mt[this.mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= y << 7 & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= y << 15 & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= y >>> 18; // TEMPERING_SHIFT_L(y) if (this.mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { z = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M] ^ z >>> 1 ^ mag01[z & 0x1]; } for (; kk < N - 1; kk++) { z = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M - N] ^ z >>> 1 ^ mag01[z & 0x1]; } z = mt[N - 1] & UPPER_MASK | mt[0] & LOWER_MASK; mt[N - 1] = mt[M - 1] ^ z >>> 1 ^ mag01[z & 0x1]; this.mti = 0; } z = this.mt[this.mti++]; z ^= z >>> 11; // TEMPERING_SHIFT_U(z) z ^= z << 7 & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(z) z ^= z << 15 & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(z) z ^= z >>> 18; // TEMPERING_SHIFT_L(z) bits = ((long) y << 32) + z >>> 1; val = bits % n; } while (bits - val + n - 1 < 0); return val; } /** * Returns a random double in the half-open range from [0.0,1.0). Thus 0.0 is a valid result but 1.0 is not. */ public double nextDouble() { int y; int z; if (this.mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M] ^ y >>> 1 ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M - N] ^ y >>> 1 ^ mag01[y & 0x1]; } y = mt[N - 1] & UPPER_MASK | mt[0] & LOWER_MASK; mt[N - 1] = mt[M - 1] ^ y >>> 1 ^ mag01[y & 0x1]; this.mti = 0; } y = this.mt[this.mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= y << 7 & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= y << 15 & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= y >>> 18; // TEMPERING_SHIFT_L(y) if (this.mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { z = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M] ^ z >>> 1 ^ mag01[z & 0x1]; } for (; kk < N - 1; kk++) { z = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M - N] ^ z >>> 1 ^ mag01[z & 0x1]; } z = mt[N - 1] & UPPER_MASK | mt[0] & LOWER_MASK; mt[N - 1] = mt[M - 1] ^ z >>> 1 ^ mag01[z & 0x1]; this.mti = 0; } z = this.mt[this.mti++]; z ^= z >>> 11; // TEMPERING_SHIFT_U(z) z ^= z << 7 & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(z) z ^= z << 15 & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(z) z ^= z >>> 18; // TEMPERING_SHIFT_L(z) /* derived from nextDouble documentation in jdk 1.2 docs, see top */ return (((long) (y >>> 6) << 27) + (z >>> 5)) / (double) (1L << 53); } /** * Returns a double in the range from 0.0 to 1.0, possibly inclusive of 0.0 and 1.0 themselves. Thus: * *

*

* * * * *
* Expression * Interval *
nextDouble(false, false) * (0.0, 1.0) *
nextDouble(true, false) * [0.0, 1.0) *
nextDouble(false, true) * (0.0, 1.0] *
nextDouble(true, true) * [0.0, 1.0] *
* *

* This version preserves all possible random values in the double range. */ public double nextDouble(boolean includeZero, boolean includeOne) { double d = 0.0; do { d = nextDouble(); // grab a value, initially from half-open [0.0, 1.0) if (includeOne && nextBoolean()) { d += 1.0; // if includeOne, with 1/2 probability, push to [1.0, 2.0) } } while (d > 1.0 || // everything above 1.0 is always invalid !includeZero && d == 0.0); // if we're not including zero, 0.0 is invalid return d; } public double nextGaussian() { if (this.__haveNextNextGaussian) { this.__haveNextNextGaussian = false; return this.__nextNextGaussian; } else { double v1, v2, s; do { int y; int z; int a; int b; if (this.mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M] ^ y >>> 1 ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M - N] ^ y >>> 1 ^ mag01[y & 0x1]; } y = mt[N - 1] & UPPER_MASK | mt[0] & LOWER_MASK; mt[N - 1] = mt[M - 1] ^ y >>> 1 ^ mag01[y & 0x1]; this.mti = 0; } y = this.mt[this.mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= y << 7 & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= y << 15 & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= y >>> 18; // TEMPERING_SHIFT_L(y) if (this.mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { z = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M] ^ z >>> 1 ^ mag01[z & 0x1]; } for (; kk < N - 1; kk++) { z = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M - N] ^ z >>> 1 ^ mag01[z & 0x1]; } z = mt[N - 1] & UPPER_MASK | mt[0] & LOWER_MASK; mt[N - 1] = mt[M - 1] ^ z >>> 1 ^ mag01[z & 0x1]; this.mti = 0; } z = this.mt[this.mti++]; z ^= z >>> 11; // TEMPERING_SHIFT_U(z) z ^= z << 7 & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(z) z ^= z << 15 & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(z) z ^= z >>> 18; // TEMPERING_SHIFT_L(z) if (this.mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { a = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M] ^ a >>> 1 ^ mag01[a & 0x1]; } for (; kk < N - 1; kk++) { a = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M - N] ^ a >>> 1 ^ mag01[a & 0x1]; } a = mt[N - 1] & UPPER_MASK | mt[0] & LOWER_MASK; mt[N - 1] = mt[M - 1] ^ a >>> 1 ^ mag01[a & 0x1]; this.mti = 0; } a = this.mt[this.mti++]; a ^= a >>> 11; // TEMPERING_SHIFT_U(a) a ^= a << 7 & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(a) a ^= a << 15 & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(a) a ^= a >>> 18; // TEMPERING_SHIFT_L(a) if (this.mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { b = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M] ^ b >>> 1 ^ mag01[b & 0x1]; } for (; kk < N - 1; kk++) { b = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M - N] ^ b >>> 1 ^ mag01[b & 0x1]; } b = mt[N - 1] & UPPER_MASK | mt[0] & LOWER_MASK; mt[N - 1] = mt[M - 1] ^ b >>> 1 ^ mag01[b & 0x1]; this.mti = 0; } b = this.mt[this.mti++]; b ^= b >>> 11; // TEMPERING_SHIFT_U(b) b ^= b << 7 & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(b) b ^= b << 15 & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(b) b ^= b >>> 18; // TEMPERING_SHIFT_L(b) /* derived from nextDouble documentation in jdk 1.2 docs, see top */ v1 = 2 * ((((long) (y >>> 6) << 27) + (z >>> 5)) / (double) (1L << 53)) - 1; v2 = 2 * ((((long) (a >>> 6) << 27) + (b >>> 5)) / (double) (1L << 53)) - 1; s = v1 * v1 + v2 * v2; } while (s >= 1 || s == 0); double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s) / s); this.__nextNextGaussian = v2 * multiplier; this.__haveNextNextGaussian = true; return v1 * multiplier; } } /** * Returns a random float in the half-open range from [0.0f,1.0f). Thus 0.0f is a valid result but 1.0f is not. */ public float nextFloat() { int y; if (this.mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M] ^ y >>> 1 ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M - N] ^ y >>> 1 ^ mag01[y & 0x1]; } y = mt[N - 1] & UPPER_MASK | mt[0] & LOWER_MASK; mt[N - 1] = mt[M - 1] ^ y >>> 1 ^ mag01[y & 0x1]; this.mti = 0; } y = this.mt[this.mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= y << 7 & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= y << 15 & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= y >>> 18; // TEMPERING_SHIFT_L(y) return (y >>> 8) / (float) (1 << 24); } /** * Returns a float in the range from 0.0f to 1.0f, possibly inclusive of 0.0f and 1.0f themselves. Thus: * *

*

* * * * *
* Expression * Interval *
nextFloat(false, false) * (0.0f, 1.0f) *
nextFloat(true, false) * [0.0f, 1.0f) *
nextFloat(false, true) * (0.0f, 1.0f] *
nextFloat(true, true) * [0.0f, 1.0f] *
* *

* This version preserves all possible random values in the float range. */ public float nextFloat(boolean includeZero, boolean includeOne) { float d = 0.0f; do { d = nextFloat(); // grab a value, initially from half-open [0.0f, 1.0f) if (includeOne && nextBoolean()) { d += 1.0f; // if includeOne, with 1/2 probability, push to [1.0f, 2.0f) } } while (d > 1.0f || // everything above 1.0f is always invalid !includeZero && d == 0.0f); // if we're not including zero, 0.0f is invalid return d; } /** * Returns an integer drawn uniformly from 0 to n-1. Suffice it to say, n must be > 0, or an * IllegalArgumentException is raised. */ public int nextInt(int n) { if (n <= 0) { throw new IllegalArgumentException("n must be positive, got: " + n); } if ((n & -n) == n) // i.e., n is a power of 2 { int y; if (this.mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M] ^ y >>> 1 ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M - N] ^ y >>> 1 ^ mag01[y & 0x1]; } y = mt[N - 1] & UPPER_MASK | mt[0] & LOWER_MASK; mt[N - 1] = mt[M - 1] ^ y >>> 1 ^ mag01[y & 0x1]; this.mti = 0; } y = this.mt[this.mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= y << 7 & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= y << 15 & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= y >>> 18; // TEMPERING_SHIFT_L(y) return (int) (n * (long) (y >>> 1) >> 31); } int bits, val; do { int y; if (this.mti >= N) // generate N words at one time { int kk; final int[] mt = this.mt; // locals are slightly faster final int[] mag01 = this.mag01; // locals are slightly faster for (kk = 0; kk < N - M; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M] ^ y >>> 1 ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = mt[kk] & UPPER_MASK | mt[kk + 1] & LOWER_MASK; mt[kk] = mt[kk + M - N] ^ y >>> 1 ^ mag01[y & 0x1]; } y = mt[N - 1] & UPPER_MASK | mt[0] & LOWER_MASK; mt[N - 1] = mt[M - 1] ^ y >>> 1 ^ mag01[y & 0x1]; this.mti = 0; } y = this.mt[this.mti++]; y ^= y >>> 11; // TEMPERING_SHIFT_U(y) y ^= y << 7 & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y) y ^= y << 15 & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y) y ^= y >>> 18; // TEMPERING_SHIFT_L(y) bits = y >>> 1; val = bits % n; } while (bits - val + n - 1 < 0); return val; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy