com.google.common.primitives.UnsignedBytes Maven / Gradle / Ivy
Show all versions of swagger-all Show documentation
/*
* Copyright (C) 2009 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.common.primitives;
import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import com.google.common.annotations.Beta;
import com.google.common.annotations.VisibleForTesting;
import sun.misc.Unsafe;
import java.nio.ByteOrder;
import java.util.Comparator;
/**
* Static utility methods pertaining to {@code byte} primitives that interpret
* values as unsigned (that is, any negative value {@code b} is treated
* as the positive value {@code 256 + b}). The corresponding methods that treat
* the values as signed are found in {@link SignedBytes}, and the methods for
* which signedness is not an issue are in {@link Bytes}.
*
* See the Guava User Guide article on
* primitive utilities.
*
* @author Kevin Bourrillion
* @author Martin Buchholz
* @author Hiroshi Yamauchi
* @author Louis Wasserman
* @since 1.0
*/
public final class UnsignedBytes {
private UnsignedBytes() {}
/**
* The largest power of two that can be represented as an unsigned {@code
* byte}.
*
* @since 10.0
*/
public static final byte MAX_POWER_OF_TWO = (byte) 0x80;
/**
* The largest value that fits into an unsigned byte.
*
* @since 13.0
*/
public static final byte MAX_VALUE = (byte) 0xFF;
private static final int UNSIGNED_MASK = 0xFF;
/**
* Returns the value of the given byte as an integer, when treated as
* unsigned. That is, returns {@code value + 256} if {@code value} is
* negative; {@code value} itself otherwise.
*
* @since 6.0
*/
public static int toInt(byte value) {
return value & UNSIGNED_MASK;
}
/**
* Returns the {@code byte} value that, when treated as unsigned, is equal to
* {@code value}, if possible.
*
* @param value a value between 0 and 255 inclusive
* @return the {@code byte} value that, when treated as unsigned, equals
* {@code value}
* @throws IllegalArgumentException if {@code value} is negative or greater
* than 255
*/
public static byte checkedCast(long value) {
if ((value >> Byte.SIZE) != 0) {
// don't use checkArgument here, to avoid boxing
throw new IllegalArgumentException("Out of range: " + value);
}
return (byte) value;
}
/**
* Returns the {@code byte} value that, when treated as unsigned, is nearest
* in value to {@code value}.
*
* @param value any {@code long} value
* @return {@code (byte) 255} if {@code value >= 255}, {@code (byte) 0} if
* {@code value <= 0}, and {@code value} cast to {@code byte} otherwise
*/
public static byte saturatedCast(long value) {
if (value > toInt(MAX_VALUE)) {
return MAX_VALUE; // -1
}
if (value < 0) {
return (byte) 0;
}
return (byte) value;
}
/**
* Compares the two specified {@code byte} values, treating them as unsigned
* values between 0 and 255 inclusive. For example, {@code (byte) -127} is
* considered greater than {@code (byte) 127} because it is seen as having
* the value of positive {@code 129}.
*
* @param a the first {@code byte} to compare
* @param b the second {@code byte} to compare
* @return a negative value if {@code a} is less than {@code b}; a positive
* value if {@code a} is greater than {@code b}; or zero if they are equal
*/
public static int compare(byte a, byte b) {
return toInt(a) - toInt(b);
}
/**
* Returns the least value present in {@code array}.
*
* @param array a nonempty array of {@code byte} values
* @return the value present in {@code array} that is less than or equal to
* every other value in the array
* @throws IllegalArgumentException if {@code array} is empty
*/
public static byte min(byte... array) {
checkArgument(array.length > 0);
int min = toInt(array[0]);
for (int i = 1; i < array.length; i++) {
int next = toInt(array[i]);
if (next < min) {
min = next;
}
}
return (byte) min;
}
/**
* Returns the greatest value present in {@code array}.
*
* @param array a nonempty array of {@code byte} values
* @return the value present in {@code array} that is greater than or equal
* to every other value in the array
* @throws IllegalArgumentException if {@code array} is empty
*/
public static byte max(byte... array) {
checkArgument(array.length > 0);
int max = toInt(array[0]);
for (int i = 1; i < array.length; i++) {
int next = toInt(array[i]);
if (next > max) {
max = next;
}
}
return (byte) max;
}
/**
* Returns a string representation of x, where x is treated as unsigned.
*
* @since 13.0
*/
@Beta
public static String toString(byte x) {
return toString(x, 10);
}
/**
* Returns a string representation of {@code x} for the given radix, where {@code x} is treated
* as unsigned.
*
* @param x the value to convert to a string.
* @param radix the radix to use while working with {@code x}
* @throws IllegalArgumentException if {@code radix} is not between {@link Character#MIN_RADIX}
* and {@link Character#MAX_RADIX}.
* @since 13.0
*/
@Beta
public static String toString(byte x, int radix) {
checkArgument(radix >= Character.MIN_RADIX && radix <= Character.MAX_RADIX,
"radix (%s) must be between Character.MIN_RADIX and Character.MAX_RADIX", radix);
// Benchmarks indicate this is probably not worth optimizing.
return Integer.toString(toInt(x), radix);
}
/**
* Returns the unsigned {@code byte} value represented by the given decimal string.
*
* @throws NumberFormatException if the string does not contain a valid unsigned {@code byte}
* value
* @throws NullPointerException if {@code s} is null
* (in contrast to {@link Byte#parseByte(String)})
* @since 13.0
*/
@Beta
public static byte parseUnsignedByte(String string) {
return parseUnsignedByte(string, 10);
}
/**
* Returns the unsigned {@code byte} value represented by a string with the given radix.
*
* @param string the string containing the unsigned {@code byte} representation to be parsed.
* @param radix the radix to use while parsing {@code string}
* @throws NumberFormatException if the string does not contain a valid unsigned {@code byte}
* with the given radix, or if {@code radix} is not between {@link Character#MIN_RADIX}
* and {@link Character#MAX_RADIX}.
* @throws NullPointerException if {@code s} is null
* (in contrast to {@link Byte#parseByte(String)})
* @since 13.0
*/
@Beta
public static byte parseUnsignedByte(String string, int radix) {
int parse = Integer.parseInt(checkNotNull(string), radix);
// We need to throw a NumberFormatException, so we have to duplicate checkedCast. =(
if (parse >> Byte.SIZE == 0) {
return (byte) parse;
} else {
throw new NumberFormatException("out of range: " + parse);
}
}
/**
* Returns a string containing the supplied {@code byte} values separated by
* {@code separator}. For example, {@code join(":", (byte) 1, (byte) 2,
* (byte) 255)} returns the string {@code "1:2:255"}.
*
* @param separator the text that should appear between consecutive values in
* the resulting string (but not at the start or end)
* @param array an array of {@code byte} values, possibly empty
*/
public static String join(String separator, byte... array) {
checkNotNull(separator);
if (array.length == 0) {
return "";
}
// For pre-sizing a builder, just get the right order of magnitude
StringBuilder builder = new StringBuilder(array.length * (3 + separator.length()));
builder.append(toInt(array[0]));
for (int i = 1; i < array.length; i++) {
builder.append(separator).append(toString(array[i]));
}
return builder.toString();
}
/**
* Returns a comparator that compares two {@code byte} arrays
* lexicographically. That is, it compares, using {@link
* #compare(byte, byte)}), the first pair of values that follow any common
* prefix, or when one array is a prefix of the other, treats the shorter
* array as the lesser. For example, {@code [] < [0x01] < [0x01, 0x7F] <
* [0x01, 0x80] < [0x02]}. Values are treated as unsigned.
*
*
The returned comparator is inconsistent with {@link
* Object#equals(Object)} (since arrays support only identity equality), but
* it is consistent with {@link java.util.Arrays#equals(byte[], byte[])}.
*
* @see
* Lexicographical order article at Wikipedia
* @since 2.0
*/
public static Comparator lexicographicalComparator() {
return LexicographicalComparatorHolder.BEST_COMPARATOR;
}
@VisibleForTesting
static Comparator lexicographicalComparatorJavaImpl() {
return LexicographicalComparatorHolder.PureJavaComparator.INSTANCE;
}
/**
* Provides a lexicographical comparator implementation; either a Java
* implementation or a faster implementation based on {@link Unsafe}.
*
* Uses reflection to gracefully fall back to the Java implementation if
* {@code Unsafe} isn't available.
*/
@VisibleForTesting
static class LexicographicalComparatorHolder {
static final String UNSAFE_COMPARATOR_NAME =
LexicographicalComparatorHolder.class.getName() + "$UnsafeComparator";
static final Comparator BEST_COMPARATOR = getBestComparator();
@VisibleForTesting
enum UnsafeComparator implements Comparator {
INSTANCE;
static final boolean BIG_ENDIAN =
ByteOrder.nativeOrder().equals(ByteOrder.BIG_ENDIAN);
/*
* The following static final fields exist for performance reasons.
*
* In UnsignedBytesBenchmark, accessing the following objects via static
* final fields is the fastest (more than twice as fast as the Java
* implementation, vs ~1.5x with non-final static fields, on x86_32)
* under the Hotspot server compiler. The reason is obviously that the
* non-final fields need to be reloaded inside the loop.
*
* And, no, defining (final or not) local variables out of the loop still
* isn't as good because the null check on the theUnsafe object remains
* inside the loop and BYTE_ARRAY_BASE_OFFSET doesn't get
* constant-folded.
*
* The compiler can treat static final fields as compile-time constants
* and can constant-fold them while (final or not) local variables are
* run time values.
*/
static final Unsafe theUnsafe;
/** The offset to the first element in a byte array. */
static final int BYTE_ARRAY_BASE_OFFSET;
static {
theUnsafe = getUnsafe();
BYTE_ARRAY_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class);
// sanity check - this should never fail
if (theUnsafe.arrayIndexScale(byte[].class) != 1) {
throw new AssertionError();
}
}
/**
* Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
* Replace with a simple call to Unsafe.getUnsafe when integrating
* into a jdk.
*
* @return a sun.misc.Unsafe
*/
private static sun.misc.Unsafe getUnsafe() {
try {
return sun.misc.Unsafe.getUnsafe();
} catch (SecurityException tryReflectionInstead) {}
try {
return java.security.AccessController.doPrivileged
(new java.security.PrivilegedExceptionAction() {
public sun.misc.Unsafe run() throws Exception {
Class k = sun.misc.Unsafe.class;
for (java.lang.reflect.Field f : k.getDeclaredFields()) {
f.setAccessible(true);
Object x = f.get(null);
if (k.isInstance(x))
return k.cast(x);
}
throw new NoSuchFieldError("the Unsafe");
}});
} catch (java.security.PrivilegedActionException e) {
throw new RuntimeException("Could not initialize intrinsics",
e.getCause());
}
}
@Override public int compare(byte[] left, byte[] right) {
int minLength = Math.min(left.length, right.length);
int minWords = minLength / Longs.BYTES;
/*
* Compare 8 bytes at a time. Benchmarking shows comparing 8 bytes at a
* time is no slower than comparing 4 bytes at a time even on 32-bit.
* On the other hand, it is substantially faster on 64-bit.
*/
for (int i = 0; i < minWords * Longs.BYTES; i += Longs.BYTES) {
long lw = theUnsafe.getLong(left, BYTE_ARRAY_BASE_OFFSET + (long) i);
long rw = theUnsafe.getLong(right, BYTE_ARRAY_BASE_OFFSET + (long) i);
if (lw != rw) {
if (BIG_ENDIAN) {
return UnsignedLongs.compare(lw, rw);
}
/*
* We want to compare only the first index where left[index] != right[index].
* This corresponds to the least significant nonzero byte in lw ^ rw, since lw
* and rw are little-endian. Long.numberOfTrailingZeros(diff) tells us the least
* significant nonzero bit, and zeroing out the first three bits of L.nTZ gives us the
* shift to get that least significant nonzero byte.
*/
int n = Long.numberOfTrailingZeros(lw ^ rw) & ~0x7;
return (int) (((lw >>> n) & UNSIGNED_MASK) - ((rw >>> n) & UNSIGNED_MASK));
}
}
// The epilogue to cover the last (minLength % 8) elements.
for (int i = minWords * Longs.BYTES; i < minLength; i++) {
int result = UnsignedBytes.compare(left[i], right[i]);
if (result != 0) {
return result;
}
}
return left.length - right.length;
}
}
enum PureJavaComparator implements Comparator {
INSTANCE;
@Override public int compare(byte[] left, byte[] right) {
int minLength = Math.min(left.length, right.length);
for (int i = 0; i < minLength; i++) {
int result = UnsignedBytes.compare(left[i], right[i]);
if (result != 0) {
return result;
}
}
return left.length - right.length;
}
}
/**
* Returns the Unsafe-using Comparator, or falls back to the pure-Java
* implementation if unable to do so.
*/
static Comparator getBestComparator() {
try {
Class> theClass = Class.forName(UNSAFE_COMPARATOR_NAME);
// yes, UnsafeComparator does implement Comparator
@SuppressWarnings("unchecked")
Comparator comparator =
(Comparator) theClass.getEnumConstants()[0];
return comparator;
} catch (Throwable t) { // ensure we really catch *everything*
return lexicographicalComparatorJavaImpl();
}
}
}
}