Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.mapred;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.mapreduce.server.jobtracker.TaskTracker;
/**
* A {@link TaskScheduler} that keeps jobs in a queue in priority order (FIFO
* by default).
*/
class JobQueueTaskScheduler extends TaskScheduler {
private static final int MIN_CLUSTER_SIZE_FOR_PADDING = 3;
public static final Log LOG = LogFactory.getLog(JobQueueTaskScheduler.class);
protected JobQueueJobInProgressListener jobQueueJobInProgressListener;
protected EagerTaskInitializationListener eagerTaskInitializationListener;
private float padFraction;
public JobQueueTaskScheduler() {
this.jobQueueJobInProgressListener = new JobQueueJobInProgressListener();
}
@Override
public synchronized void start() throws IOException {
super.start();
taskTrackerManager.addJobInProgressListener(jobQueueJobInProgressListener);
eagerTaskInitializationListener.setTaskTrackerManager(taskTrackerManager);
eagerTaskInitializationListener.start();
taskTrackerManager.addJobInProgressListener(
eagerTaskInitializationListener);
}
@Override
public synchronized void terminate() throws IOException {
if (jobQueueJobInProgressListener != null) {
taskTrackerManager.removeJobInProgressListener(
jobQueueJobInProgressListener);
}
if (eagerTaskInitializationListener != null) {
taskTrackerManager.removeJobInProgressListener(
eagerTaskInitializationListener);
eagerTaskInitializationListener.terminate();
}
super.terminate();
}
@Override
public synchronized void setConf(Configuration conf) {
super.setConf(conf);
padFraction = conf.getFloat("mapred.jobtracker.taskalloc.capacitypad",
0.01f);
this.eagerTaskInitializationListener =
new EagerTaskInitializationListener(conf);
}
@Override
public synchronized List assignTasks(TaskTracker taskTracker)
throws IOException {
TaskTrackerStatus taskTrackerStatus = taskTracker.getStatus();
ClusterStatus clusterStatus = taskTrackerManager.getClusterStatus();
final int numTaskTrackers = clusterStatus.getTaskTrackers();
final int clusterMapCapacity = clusterStatus.getMaxMapTasks();
final int clusterReduceCapacity = clusterStatus.getMaxReduceTasks();
Collection jobQueue =
jobQueueJobInProgressListener.getJobQueue();
//
// Get map + reduce counts for the current tracker.
//
final int trackerMapCapacity = taskTrackerStatus.getMaxMapSlots();
final int trackerReduceCapacity = taskTrackerStatus.getMaxReduceSlots();
final int trackerRunningMaps = taskTrackerStatus.countMapTasks();
final int trackerRunningReduces = taskTrackerStatus.countReduceTasks();
// Assigned tasks
List assignedTasks = new ArrayList();
//
// Compute (running + pending) map and reduce task numbers across pool
//
int remainingReduceLoad = 0;
int remainingMapLoad = 0;
synchronized (jobQueue) {
for (JobInProgress job : jobQueue) {
if (job.getStatus().getRunState() == JobStatus.RUNNING) {
remainingMapLoad += (job.desiredMaps() - job.finishedMaps());
if (job.scheduleReduces()) {
remainingReduceLoad +=
(job.desiredReduces() - job.finishedReduces());
}
}
}
}
// Compute the 'load factor' for maps and reduces
double mapLoadFactor = 0.0;
if (clusterMapCapacity > 0) {
mapLoadFactor = (double)remainingMapLoad / clusterMapCapacity;
}
double reduceLoadFactor = 0.0;
if (clusterReduceCapacity > 0) {
reduceLoadFactor = (double)remainingReduceLoad / clusterReduceCapacity;
}
//
// In the below steps, we allocate first map tasks (if appropriate),
// and then reduce tasks if appropriate. We go through all jobs
// in order of job arrival; jobs only get serviced if their
// predecessors are serviced, too.
//
//
// We assign tasks to the current taskTracker if the given machine
// has a workload that's less than the maximum load of that kind of
// task.
// However, if the cluster is close to getting loaded i.e. we don't
// have enough _padding_ for speculative executions etc., we only
// schedule the "highest priority" task i.e. the task from the job
// with the highest priority.
//
final int trackerCurrentMapCapacity =
Math.min((int)Math.ceil(mapLoadFactor * trackerMapCapacity),
trackerMapCapacity);
int availableMapSlots = trackerCurrentMapCapacity - trackerRunningMaps;
boolean exceededMapPadding = false;
if (availableMapSlots > 0) {
exceededMapPadding =
exceededPadding(true, clusterStatus, trackerMapCapacity);
}
int numLocalMaps = 0;
int numNonLocalMaps = 0;
scheduleMaps:
for (int i=0; i < availableMapSlots; ++i) {
synchronized (jobQueue) {
for (JobInProgress job : jobQueue) {
if (job.getStatus().getRunState() != JobStatus.RUNNING) {
continue;
}
Task t = null;
// Try to schedule a node-local or rack-local Map task
t =
job.obtainNewLocalMapTask(taskTrackerStatus, numTaskTrackers,
taskTrackerManager.getNumberOfUniqueHosts());
if (t != null) {
assignedTasks.add(t);
++numLocalMaps;
// Don't assign map tasks to the hilt!
// Leave some free slots in the cluster for future task-failures,
// speculative tasks etc. beyond the highest priority job
if (exceededMapPadding) {
break scheduleMaps;
}
// Try all jobs again for the next Map task
break;
}
// Try to schedule a node-local or rack-local Map task
t =
job.obtainNewNonLocalMapTask(taskTrackerStatus, numTaskTrackers,
taskTrackerManager.getNumberOfUniqueHosts());
if (t != null) {
assignedTasks.add(t);
++numNonLocalMaps;
// We assign at most 1 off-switch or speculative task
// This is to prevent TaskTrackers from stealing local-tasks
// from other TaskTrackers.
break scheduleMaps;
}
}
}
}
int assignedMaps = assignedTasks.size();
//
// Same thing, but for reduce tasks
// However we _never_ assign more than 1 reduce task per heartbeat
//
final int trackerCurrentReduceCapacity =
Math.min((int)Math.ceil(reduceLoadFactor * trackerReduceCapacity),
trackerReduceCapacity);
final int availableReduceSlots =
Math.min((trackerCurrentReduceCapacity - trackerRunningReduces), 1);
boolean exceededReducePadding = false;
if (availableReduceSlots > 0) {
exceededReducePadding = exceededPadding(false, clusterStatus,
trackerReduceCapacity);
synchronized (jobQueue) {
for (JobInProgress job : jobQueue) {
if (job.getStatus().getRunState() != JobStatus.RUNNING ||
job.numReduceTasks == 0) {
continue;
}
Task t =
job.obtainNewReduceTask(taskTrackerStatus, numTaskTrackers,
taskTrackerManager.getNumberOfUniqueHosts()
);
if (t != null) {
assignedTasks.add(t);
break;
}
// Don't assign reduce tasks to the hilt!
// Leave some free slots in the cluster for future task-failures,
// speculative tasks etc. beyond the highest priority job
if (exceededReducePadding) {
break;
}
}
}
}
if (LOG.isDebugEnabled()) {
LOG.debug("Task assignments for " + taskTrackerStatus.getTrackerName() + " --> " +
"[" + mapLoadFactor + ", " + trackerMapCapacity + ", " +
trackerCurrentMapCapacity + ", " + trackerRunningMaps + "] -> [" +
(trackerCurrentMapCapacity - trackerRunningMaps) + ", " +
assignedMaps + " (" + numLocalMaps + ", " + numNonLocalMaps +
")] [" + reduceLoadFactor + ", " + trackerReduceCapacity + ", " +
trackerCurrentReduceCapacity + "," + trackerRunningReduces +
"] -> [" + (trackerCurrentReduceCapacity - trackerRunningReduces) +
", " + (assignedTasks.size()-assignedMaps) + "]");
}
return assignedTasks;
}
private boolean exceededPadding(boolean isMapTask,
ClusterStatus clusterStatus,
int maxTaskTrackerSlots) {
int numTaskTrackers = clusterStatus.getTaskTrackers();
int totalTasks =
(isMapTask) ? clusterStatus.getMapTasks() :
clusterStatus.getReduceTasks();
int totalTaskCapacity =
isMapTask ? clusterStatus.getMaxMapTasks() :
clusterStatus.getMaxReduceTasks();
Collection jobQueue =
jobQueueJobInProgressListener.getJobQueue();
boolean exceededPadding = false;
synchronized (jobQueue) {
int totalNeededTasks = 0;
for (JobInProgress job : jobQueue) {
if (job.getStatus().getRunState() != JobStatus.RUNNING ||
job.numReduceTasks == 0) {
continue;
}
//
// Beyond the highest-priority task, reserve a little
// room for failures and speculative executions; don't
// schedule tasks to the hilt.
//
totalNeededTasks +=
isMapTask ? job.desiredMaps() : job.desiredReduces();
int padding = 0;
if (numTaskTrackers > MIN_CLUSTER_SIZE_FOR_PADDING) {
padding =
Math.min(maxTaskTrackerSlots,
(int) (totalNeededTasks * padFraction));
}
if (totalTasks + padding >= totalTaskCapacity) {
exceededPadding = true;
break;
}
}
}
return exceededPadding;
}
@Override
public synchronized Collection getJobs(String queueName) {
return jobQueueJobInProgressListener.getJobQueue();
}
}