All Downloads are FREE. Search and download functionalities are using the official Maven repository.

math.function.NumericallyDiffMultivariateFunction Maven / Gradle / Ivy

There is a newer version: 0.9.5
Show newest version
package math.function;

import math.MathConsts;

/**
 * Finite difference numerical gradient calculation using the forward difference
 * approximation {@code f'(x) = (f(x + h) - f(x)) / h}.
 * 

* Scaling of {@code h} is taken into account by each individual {@code h} being * based upon the absolute magnitude of the corresponding element in the vector * {@code x}. */ public abstract class NumericallyDiffMultivariateFunction implements DiffMultivariateFunction { protected final double diffScale; public NumericallyDiffMultivariateFunction() { this(1.5 * Math.sqrt(MathConsts.MACH_EPS)); } public NumericallyDiffMultivariateFunction(double diffScale) { this.diffScale = diffScale; } @Override public final void derivativeAt(double[] x, double[] grad) { double fx = this.valueAt(x); for (int i = 0; i < x.length; ++i) { double xi = x[i]; double hi = (xi != 0) ? diffScale * Math.abs(xi) : diffScale; double xi_plus_hi = xi + hi; // account for potential round-off errors hi = xi_plus_hi - xi; x[i] = xi_plus_hi; // new function value for advance in variable i double fx_plus_hi = this.valueAt(x); // estimated gradient component for variable i grad[i] = (fx_plus_hi - fx) / hi; // restore the old value for variable i x[i] = xi; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy