g0901_1000.s0909_snakes_and_ladders.readme.md Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java Show documentation
Show all versions of leetcode-in-java Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
909\. Snakes and Ladders
Medium
You are given an `n x n` integer matrix `board` where the cells are labeled from `1` to n2
in a [**Boustrophedon style**](https://en.wikipedia.org/wiki/Boustrophedon) starting from the bottom left of the board (i.e. `board[n - 1][0]`) and alternating direction each row.
You start on square `1` of the board. In each move, starting from square `curr`, do the following:
* Choose a destination square `next` with a label in the range [curr + 1, min(curr + 6, n2)]
.
* This choice simulates the result of a standard **6-sided die roll**: i.e., there are always at most 6 destinations, regardless of the size of the board.
* If `next` has a snake or ladder, you **must** move to the destination of that snake or ladder. Otherwise, you move to `next`.
* The game ends when you reach the square n2
.
A board square on row `r` and column `c` has a snake or ladder if `board[r][c] != -1`. The destination of that snake or ladder is `board[r][c]`. Squares `1` and n2
do not have a snake or ladder.
Note that you only take a snake or ladder at most once per move. If the destination to a snake or ladder is the start of another snake or ladder, you do **not** follow the subsequent snake or ladder.
* For example, suppose the board is `[[-1,4],[-1,3]]`, and on the first move, your destination square is `2`. You follow the ladder to square `3`, but do **not** follow the subsequent ladder to `4`.
Return _the least number of moves required to reach the square_ n2
_. If it is not possible to reach the square, return_ `-1`.
**Example 1:**
![](https://assets.leetcode.com/uploads/2018/09/23/snakes.png)
**Input:** board = [[-1,-1,-1,-1,-1,-1],[-1,-1,-1,-1,-1,-1],[-1,-1,-1,-1,-1,-1],[-1,35,-1,-1,13,-1],[-1,-1,-1,-1,-1,-1],[-1,15,-1,-1,-1,-1]]
**Output:** 4
**Explanation:**
In the beginning, you start at square 1 (at row 5, column 0).
You decide to move to square 2 and must take the ladder to square 15.
You then decide to move to square 17 and must take the snake to square 13.
You then decide to move to square 14 and must take the ladder to square 35.
You then decide to move to square 36, ending the game.
This is the lowest possible number of moves to reach the last square, so return 4.
**Example 2:**
**Input:** board = [[-1,-1],[-1,3]]
**Output:** 1
**Constraints:**
* `n == board.length == board[i].length`
* `2 <= n <= 20`
* `grid[i][j]` is either `-1` or in the range [1, n2]
.
* The squares labeled `1` and n2
do not have any ladders or snakes.