g1501_1600.s1583_count_unhappy_friends.readme.md Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java Show documentation
Show all versions of leetcode-in-java Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
1583\. Count Unhappy Friends
Medium
You are given a list of `preferences` for `n` friends, where `n` is always **even**.
For each person `i`, `preferences[i]` contains a list of friends **sorted** in the **order of preference**. In other words, a friend earlier in the list is more preferred than a friend later in the list. Friends in each list are denoted by integers from `0` to `n-1`.
All the friends are divided into pairs. The pairings are given in a list `pairs`, where pairs[i] = [xi, yi]
denotes xi
is paired with yi
and yi
is paired with xi
.
However, this pairing may cause some of the friends to be unhappy. A friend `x` is unhappy if `x` is paired with `y` and there exists a friend `u` who is paired with `v` but:
* `x` prefers `u` over `y`, and
* `u` prefers `x` over `v`.
Return _the number of unhappy friends_.
**Example 1:**
**Input:** n = 4, preferences = [[1, 2, 3], [3, 2, 0], [3, 1, 0], [1, 2, 0]], pairs = [[0, 1], [2, 3]]
**Output:** 2
**Explanation:**
Friend 1 is unhappy because:
- 1 is paired with 0 but prefers 3 over 0, and
- 3 prefers 1 over 2.
Friend 3 is unhappy because:
- 3 is paired with 2 but prefers 1 over 2, and
- 1 prefers 3 over 0.
Friends 0 and 2 are happy.
**Example 2:**
**Input:** n = 2, preferences = [[1], [0]], pairs = [[1, 0]]
**Output:** 0
**Explanation:** Both friends 0 and 1 are happy.
**Example 3:**
**Input:** n = 4, preferences = [[1, 3, 2], [2, 3, 0], [1, 3, 0], [0, 2, 1]], pairs = [[1, 3], [0, 2]]
**Output:** 4
**Constraints:**
* `2 <= n <= 500`
* `n` is even.
* `preferences.length == n`
* `preferences[i].length == n - 1`
* `0 <= preferences[i][j] <= n - 1`
* `preferences[i]` does not contain `i`.
* All values in `preferences[i]` are unique.
* `pairs.length == n/2`
* `pairs[i].length == 2`
* xi != yi
* 0 <= xi, yi <= n - 1
* Each person is contained in **exactly one** pair.