g1701_1800.s1706_where_will_the_ball_fall.readme.md Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of leetcode-in-java Show documentation
Show all versions of leetcode-in-java Show documentation
Java-based LeetCode algorithm problem solutions, regularly updated
1706\. Where Will the Ball Fall
Medium
You have a 2-D `grid` of size `m x n` representing a box, and you have `n` balls. The box is open on the top and bottom sides.
Each cell in the box has a diagonal board spanning two corners of the cell that can redirect a ball to the right or to the left.
* A board that redirects the ball to the right spans the top-left corner to the bottom-right corner and is represented in the grid as `1`.
* A board that redirects the ball to the left spans the top-right corner to the bottom-left corner and is represented in the grid as `-1`.
We drop one ball at the top of each column of the box. Each ball can get stuck in the box or fall out of the bottom. A ball gets stuck if it hits a "V" shaped pattern between two boards or if a board redirects the ball into either wall of the box.
Return _an array_ `answer` _of size_ `n` _where_ `answer[i]` _is the column that the ball falls out of at the bottom after dropping the ball from the_ ith
_column at the top, or `-1` _if the ball gets stuck in the box_._
**Example 1:**
**![](https://assets.leetcode.com/uploads/2019/09/26/ball.jpg)**
**Input:** grid = [[1,1,1,-1,-1],[1,1,1,-1,-1],[-1,-1,-1,1,1],[1,1,1,1,-1],[-1,-1,-1,-1,-1]]
**Output:** [1,-1,-1,-1,-1]
**Explanation:** This example is shown in the photo.
Ball b0 is dropped at column 0 and falls out of the box at column 1.
Ball b1 is dropped at column 1 and will get stuck in the box between column 2 and 3 and row 1.
Ball b2 is dropped at column 2 and will get stuck on the box between column 2 and 3 and row 0.
Ball b3 is dropped at column 3 and will get stuck on the box between column 2 and 3 and row 0.
Ball b4 is dropped at column 4 and will get stuck on the box between column 2 and 3 and row 1.
**Example 2:**
**Input:** grid = [[-1]]
**Output:** [-1]
**Explanation:** The ball gets stuck against the left wall.
**Example 3:**
**Input:** grid = [[1,1,1,1,1,1],[-1,-1,-1,-1,-1,-1],[1,1,1,1,1,1],[-1,-1,-1,-1,-1,-1]]
**Output:** [0,1,2,3,4,-1]
**Constraints:**
* `m == grid.length`
* `n == grid[i].length`
* `1 <= m, n <= 100`
* `grid[i][j]` is `1` or `-1`.