All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.carrotsearch.hppcrt.lists.IntArrayDeque Maven / Gradle / Ivy

Go to download

High Performance Primitive Collections Realtime (fork of HPPC from Carrotsearch) Fundamental data structures (maps, sets, lists, queues, heaps, sorts) generated for combinations of object and primitive types to conserve JVM memory and speed up execution. The Realtime fork intends to extend the existing collections, by tweaking to remove any dynamic allocations at runtime, and to obtain low variance execution times whatever the input nature.

There is a newer version: 0.7.5
Show newest version
package com.carrotsearch.hppcrt.lists;

import java.util.*;

import com.carrotsearch.hppcrt.*;
import com.carrotsearch.hppcrt.cursors.*;
import com.carrotsearch.hppcrt.predicates.*;
import com.carrotsearch.hppcrt.procedures.*;
import com.carrotsearch.hppcrt.sorting.*;

/**
 * An array-backed deque (double-ended queue)  of ints. A single array is used to store and
 * manipulate all elements. Reallocations are governed by a {@link ArraySizingStrategy}
 * and may be expensive if they move around really large chunks of memory.
 * This dequeue is also a IntIndexedContainer, where index 0 is the head of the queue, and
 * size() - 1 index is the last element.
 * 

See {@link ObjectArrayDeque} class for API similarities and differences against Java * Collections. */ @javax.annotation.Generated(date = "2014-10-25T20:54:04+0200", value = "HPPC-RT generated from: IntArrayDeque.java") public class IntArrayDeque extends AbstractIntCollection implements IntDeque, IntIndexedContainer, Cloneable { /** * Default capacity if no other capacity is given in the constructor. */ public final static int DEFAULT_CAPACITY = 5; /** * Internal array for storing elements. * *

* Direct deque iteration from head to tail: iterate buffer[i % buffer.length] for i in [this.head; this.head + size()[ *

*/ public int[] buffer; /** * The index of the element at the head of the deque or an * arbitrary number equal to tail if the deque is empty. */ public int head; /** * The index at which the next element would be added to the tail * of the deque. */ public int tail; /** * Buffer resizing strategy. */ protected final ArraySizingStrategy resizer; /** * internal pool of DescendingValueIterator (must be created in constructor) */ protected final IteratorPool descendingValueIteratorPool; /** * internal pool of ValueIterator (must be created in constructor) */ protected final IteratorPool valueIteratorPool; /** * Create with default sizing strategy and initial capacity for storing * {@value #DEFAULT_CAPACITY} elements. * * @see BoundedProportionalArraySizingStrategy */ public IntArrayDeque() { this(IntArrayDeque.DEFAULT_CAPACITY); } /** * Create with default sizing strategy and the given initial capacity. * * @see BoundedProportionalArraySizingStrategy */ public IntArrayDeque(final int initialCapacity) { this(initialCapacity, new BoundedProportionalArraySizingStrategy()); } /** * Create with a custom buffer resizing strategy. */ public IntArrayDeque(int initialCapacity, final ArraySizingStrategy resizer) { assert initialCapacity >= 0 : "initialCapacity must be >= 0: " + initialCapacity; assert resizer != null; this.resizer = resizer; // +1 because there is always one empty slot in a deque. (seen ensure buffer space) initialCapacity = resizer.round(initialCapacity + 1); this.buffer = new int [initialCapacity]; this.valueIteratorPool = new IteratorPool( new ObjectFactory() { @Override public ValueIterator create() { return new ValueIterator(); } @Override public void initialize(final ValueIterator obj) { obj.cursor.index = ((IntArrayDeque.this.head >= 1) ? IntArrayDeque.this.head - 1 : IntArrayDeque.this.buffer.length - 1); obj.remaining = IntArrayDeque.this.size(); } @Override public void reset(final ValueIterator obj) { // nothing } }); this.descendingValueIteratorPool = new IteratorPool( new ObjectFactory() { @Override public DescendingValueIterator create() { return new DescendingValueIterator(); } @Override public void initialize(final DescendingValueIterator obj) { obj.cursor.index = IntArrayDeque.this.tail; obj.remaining = IntArrayDeque.this.size(); } @Override public void reset(final DescendingValueIterator obj) { // nothing } }); } /** * Creates a new deque from elements of another container, appending them * at the end of this deque. */ public IntArrayDeque(final IntContainer container) { this(container.size()); addLast(container); } /** * {@inheritDoc} */ @Override public void addFirst(final int e1) { int h = ((this.head >= 1) ? this.head - 1 : this.buffer.length - 1); if (h == this.tail) { ensureBufferSpace(1); h = ((this.head >= 1) ? this.head - 1 : this.buffer.length - 1); } this.buffer[this.head = h] = e1; } /** * Vararg-signature method for adding elements at the front of this deque. * *

This method is handy, but costly if used in tight loops (anonymous * array passing)

*/ public void addFirst(final int... elements) { ensureBufferSpace(elements.length); // For now, naive loop. for (int i = 0; i < elements.length; i++) { addFirst(elements[i]); } } /** * Inserts all elements from the given container to the front of this deque. * * @return Returns the number of elements actually added as a result of this * call. */ public int addFirst(final IntContainer container) { return addFirst((Iterable) container); } /** * Inserts all elements from the given iterable to the front of this deque. * * @return Returns the number of elements actually added as a result of this call. */ public int addFirst(final Iterable iterable) { int size = 0; for (final IntCursor cursor : iterable) { addFirst(cursor.value); size++; } return size; } /** * {@inheritDoc} */ @Override public void addLast(final int e1) { int t = ((this.tail + 1 == this.buffer.length) ? 0 : this.tail + 1); if (this.head == t) { ensureBufferSpace(1); t = ((this.tail + 1 == this.buffer.length) ? 0 : this.tail + 1); } this.buffer[this.tail] = e1; this.tail = t; } /** * Vararg-signature method for adding elements at the end of this deque. * *

This method is handy, but costly if used in tight loops (anonymous * array passing)

*/ public void addLast(final int... elements) { ensureBufferSpace(1); // For now, naive loop. for (int i = 0; i < elements.length; i++) { addLast(elements[i]); } } /** * Inserts all elements from the given container to the end of this deque. * * @return Returns the number of elements actually added as a result of this * call. */ public int addLast(final IntContainer container) { return addLast((Iterable) container); } /** * Inserts all elements from the given iterable to the end of this deque. * * @return Returns the number of elements actually added as a result of this call. */ public int addLast(final Iterable iterable) { int size = 0; for (final IntCursor cursor : iterable) { addLast(cursor.value); size++; } return size; } /** * {@inheritDoc} */ @Override public int removeFirst() { assert size() > 0 : "The deque is empty."; final int result = this.buffer[this.head]; this.head = ((this.head + 1 == this.buffer.length) ? 0 : this.head + 1); return result; } /** * {@inheritDoc} */ @Override public int removeLast() { assert size() > 0 : "The deque is empty."; this.tail = ((this.tail >= 1) ? this.tail - 1 : this.buffer.length - 1); final int result = this.buffer[this.tail]; return result; } /** * {@inheritDoc} */ @Override public int getFirst() { assert size() > 0 : "The deque is empty."; return this.buffer[this.head]; } /** * {@inheritDoc} */ @Override public int getLast() { assert size() > 0 : "The deque is empty."; return this.buffer[((this.tail >= 1) ? this.tail - 1 : this.buffer.length - 1)]; } /** * {@inheritDoc} * The returned position is relative to the head, * i.e w.r.t the {@link IntIndexedContainer}, index 0 is the head of the queue, size() - 1 is the last element position. */ @Override public int removeFirstOccurrence(final int e1) { int pos = -1; final int index = bufferIndexOf(e1); if (index >= 0) { pos = bufferIndexToPosition(index); removeAtBufferIndex(index); } return pos; } /** * Return the index of the first element equal to * e1. The index points to the {@link #buffer} array. * * @param e1 The element to look for. * @return Returns the index in {@link #buffer} of the first element equal to e1 * or -1 if not found. */ public int bufferIndexOf(final int e1) { final int last = this.tail; final int bufLen = this.buffer.length; final int[] buffer = this.buffer; for (int i = this.head; i != last; i = ((i + 1 == bufLen) ? 0 : i + 1)) { if (((e1) == (buffer[i]))) { return i; } } return -1; } /** * {@inheritDoc} * The returned position is relative to the head, * i.e w.r.t the {@link IntIndexedContainer}, index 0 is the head of the queue, size() - 1 is the last element position. */ @Override public int removeLastOccurrence(final int e1) { int pos = -1; final int index = lastBufferIndexOf(e1); if (index >= 0) { pos = bufferIndexToPosition(index); removeAtBufferIndex(index); } return pos; } /** * Return the index of the last element equal to * e1. The index points to the {@link #buffer} array. * * @param e1 The element to look for. * @return Returns the index in {@link #buffer} of the first element equal to e1 * or -1 if not found. */ public int lastBufferIndexOf(final int e1) { final int bufLen = this.buffer.length; final int last = ((this.head >= 1) ? this.head - 1 : bufLen - 1); final int[] buffer = this.buffer; for (int i = ((this.tail >= 1) ? this.tail - 1 : bufLen - 1); i != last; i = ((i >= 1) ? i - 1 : bufLen - 1)) { if (((e1) == (buffer[i]))) { return i; } } return -1; } /** * IntIndexedContainer methods */ /** * {@inheritDoc} * The returned position is relative to the head, * i.e w.r.t the {@link IntIndexedContainer}, index 0 is the head of the queue, size() - 1 is the last element position. */ @Override public int indexOf(final int e1) { return bufferIndexToPosition(bufferIndexOf(e1)); } /** * {@inheritDoc} * The returned position is relative to the head, * i.e w.r.t the {@link IntIndexedContainer}, index 0 is the head of the queue, size() - 1 is the last element position. */ @Override public int lastIndexOf(final int e1) { return bufferIndexToPosition(lastBufferIndexOf(e1)); } /** * {@inheritDoc} */ @Override public int removeAllOccurrences(final int e1) { int removed = 0; final int last = this.tail; final int bufLen = this.buffer.length; final int[] buffer = this.buffer; int from, to; for (from = to = this.head; from != last; from = ((from + 1 == bufLen) ? 0 : from + 1)) { if (((e1) == (buffer[from]))) { removed++; continue; } if (to != from) { buffer[to] = buffer[from]; } to = ((to + 1 == bufLen) ? 0 : to + 1); } this.tail = to; return removed; } /** * Removes the element at index in the internal * {@link #buffer} array. * * @param index Index of the element to remove. The index must be located between * {@link #head} and {@link #tail} in modulo {@link #buffer} arithmetic. */ public void removeAtBufferIndex(final int index) { assert (this.head <= this.tail ? index >= this.head && index < this.tail : index >= this.head || index < this.tail) : "Index out of range (head=" + this.head + ", tail=" + this.tail + ", index=" + index + ")."; // Cache fields in locals (hopefully moved to registers). final int[] b = this.buffer; final int bufLen = b.length; final int lastIndex = bufLen - 1; final int head = this.head; final int tail = this.tail; final int leftChunk = Math.abs(index - head) % bufLen; final int rightChunk = Math.abs(tail - index) % bufLen; if (leftChunk < rightChunk) { if (index >= head) { System.arraycopy(b, head, b, head + 1, leftChunk); } else { System.arraycopy(b, 0, b, 1, index); b[0] = b[lastIndex]; System.arraycopy(b, head, b, head + 1, lastIndex - head); } this.head = ((head + 1 == bufLen) ? 0 : head + 1); } else { if (index < tail) { System.arraycopy(b, index + 1, b, index, rightChunk); } else { System.arraycopy(b, index + 1, b, index, lastIndex - index); b[lastIndex] = b[0]; System.arraycopy(b, 1, b, 0, tail); } this.tail = ((tail >= 1) ? tail - 1 : bufLen - 1); } } /** * {@inheritDoc} */ @Override public int size() { if (this.head <= this.tail) { return this.tail - this.head; } return (this.tail - this.head + this.buffer.length); } /** * {@inheritDoc} */ @Override public int capacity() { return this.buffer.length; } /** * {@inheritDoc} *

The internal array buffers are not released as a result of this call.

*/ @Override public void clear() { this.head = this.tail = 0; } /** * Compact the internal buffer to prepare sorting * Beware, this changes the relative order of elements, so is only useful to * not-stable sorts while sorting the WHOLE buffer ! */ private void compactBeforeSorting() { if (this.head > this.tail) { final int size = size(); //pack the separated chunk to the beginning of the buffer System.arraycopy(this.buffer, this.head, this.buffer, this.tail, this.buffer.length - this.head); //reset of the positions this.head = 0; this.tail = size; //for GC sake, reset hole elements now at the end of buffer } } /** * Release internal buffers of this deque and reallocate the smallest buffer possible. */ public void release() { this.head = this.tail = 0; this.buffer = new int [this.resizer.round(IntArrayDeque.DEFAULT_CAPACITY)]; } /** * Ensures the internal buffer has enough free slots to store * expectedAdditions. Increases internal buffer size if needed. */ protected void ensureBufferSpace(final int expectedAdditions) { final int bufferLen = (this.buffer == null ? 0 : this.buffer.length); final int elementsCount = size(); // +1 because there is always one empty slot in a deque. if (elementsCount >= bufferLen - expectedAdditions - 1) { final int newSize = this.resizer.grow(bufferLen, elementsCount, expectedAdditions + 1); assert newSize >= (elementsCount + expectedAdditions + 1) : "Resizer failed to" + " return sensible new size: " + newSize + " <= " + (elementsCount + expectedAdditions); final int[] newBuffer = new int [newSize]; if (bufferLen > 0) { toArray(newBuffer); this.tail = elementsCount; this.head = 0; } this.buffer = newBuffer; } } /** * Copies elements of this deque to an array. The content of the target * array is filled from index 0 (head of the queue) to index size() - 1 * (tail of the queue). * * @param target The target array must be large enough to hold all elements. * @return Returns the target argument for chaining. */ @Override public int[] toArray(final int[] target) { assert target.length >= size() : "Target array must be >= " + size(); if (this.head < this.tail) { // The contents is not wrapped around. Just copy. System.arraycopy(this.buffer, this.head, target, 0, size()); } else if (this.head > this.tail) { // The contents is split. Merge elements from the following indexes: // [head...buffer.length - 1][0, tail - 1] final int rightCount = this.buffer.length - this.head; System.arraycopy(this.buffer, this.head, target, 0, rightCount); System.arraycopy(this.buffer, 0, target, rightCount, this.tail); } return target; } /** * Clone this object. The returned clone will reuse the same array resizing strategy. * It also realizes a trim-to- this.size() in the process. */ @Override public IntArrayDeque clone() { /* */ //real constructor call final IntArrayDeque cloned = new IntArrayDeque(this.size(), this.resizer); cloned.defaultValue = this.defaultValue; //copied in-order by construction. cloned.addLast(this); return cloned; } /** * An iterator implementation for {@link ObjectArrayDeque#iterator}. */ public final class ValueIterator extends AbstractIterator { public final IntCursor cursor; private int remaining; public ValueIterator() { this.cursor = new IntCursor(); this.cursor.index = ((IntArrayDeque.this.head >= 1) ? IntArrayDeque.this.head - 1 : IntArrayDeque.this.buffer.length - 1); this.remaining = IntArrayDeque.this.size(); } @Override protected IntCursor fetch() { if (this.remaining == 0) { return done(); } this.remaining--; this.cursor.value = IntArrayDeque.this.buffer[this.cursor.index = ((this.cursor.index + 1 == IntArrayDeque.this.buffer.length) ? 0 : this.cursor.index + 1)]; return this.cursor; } } /** * An iterator implementation for {@link ObjectArrayDeque#descendingIterator()}. */ public final class DescendingValueIterator extends AbstractIterator { public final IntCursor cursor; private int remaining; public DescendingValueIterator() { this.cursor = new IntCursor(); this.cursor.index = IntArrayDeque.this.tail; this.remaining = IntArrayDeque.this.size(); } @Override protected IntCursor fetch() { if (this.remaining == 0) { return done(); } this.remaining--; this.cursor.value = IntArrayDeque.this.buffer[this.cursor.index = ((this.cursor.index >= 1) ? this.cursor.index - 1 : IntArrayDeque.this.buffer.length - 1)]; return this.cursor; } } /** * Returns a cursor over the values of this deque (in head to tail order). The * iterator is implemented as a cursor and it returns the same cursor instance * on every call to {@link Iterator#next()} (to avoid boxing of primitive types). To * read the current value (or index in the deque's buffer) use the cursor's public * fields. An example is shown below. * *
     * for (IntValueCursor c : intDeque)
     * {
     *     System.out.println("buffer index="
     *         + c.index + " value=" + c.value);
     * }
     * 
* @return */ @Override public ValueIterator iterator() { //return new ValueIterator(); return this.valueIteratorPool.borrow(); } /** * Returns a cursor over the values of this deque (in tail to head order). The * iterator is implemented as a cursor and it returns the same cursor instance * on every call to {@link Iterator#next()} (to avoid boxing of primitive types). To * read the current value (or index in the deque's buffer) use the cursor's public * fields. An example is shown below. * *
     * for (Iterator i = intDeque.descendingIterator(); i.hasNext(); )
     * {
     *     final IntCursor c = i.next();
     *     System.out.println("buffer index="
     *         + c.index + " value=" + c.value);
     * }
     * 
* @return */ @Override public DescendingValueIterator descendingIterator() { //return new DescendingValueIterator(); return this.descendingValueIteratorPool.borrow(); } /** * {@inheritDoc} */ @Override public T forEach(final T procedure) { forEach(procedure, this.head, this.tail); return procedure; } /** * Applies procedure to a slice of the deque, * fromIndex, inclusive, to toIndex, * exclusive, indices are in {@link #buffer} array. */ private void forEach(final IntProcedure procedure, final int fromIndex, final int toIndex) { final int[] buffer = this.buffer; for (int i = fromIndex; i != toIndex; i = ((i + 1 == buffer.length) ? 0 : i + 1)) { procedure.apply(buffer[i]); } } /** * {@inheritDoc} */ @Override public T forEach(final T predicate) { final int fromIndex = this.head; final int toIndex = this.tail; final int[] buffer = this.buffer; for (int i = fromIndex; i != toIndex; i = ((i + 1 == buffer.length) ? 0 : i + 1)) { if (!predicate.apply(buffer[i])) { break; } } return predicate; } /** * Applies procedure to all elements of this deque, tail to head. */ @Override public T descendingForEach(final T procedure) { descendingForEach(procedure, this.head, this.tail); return procedure; } /** * Applies procedure to a slice of the deque, * toIndex, exclusive, down to fromIndex, inclusive. */ private void descendingForEach(final IntProcedure procedure, final int fromIndex, final int toIndex) { if (fromIndex == toIndex) { return; } final int[] buffer = this.buffer; int i = toIndex; do { i = ((i >= 1) ? i - 1 : buffer.length - 1); procedure.apply(buffer[i]); } while (i != fromIndex); } /** * {@inheritDoc} */ @Override public T descendingForEach(final T predicate) { descendingForEach(predicate, this.head, this.tail); return predicate; } /** * Applies predicate to a slice of the deque, * toIndex, exclusive, down to fromIndex, inclusive * or until the predicate returns false. * Indices are in {@link #buffer} array. */ private void descendingForEach(final IntPredicate predicate, final int fromIndex, final int toIndex) { if (fromIndex == toIndex) { return; } final int[] buffer = this.buffer; int i = toIndex; do { i = ((i >= 1) ? i - 1 : buffer.length - 1); if (!predicate.apply(buffer[i])) { break; } } while (i != fromIndex); } /** * {@inheritDoc} */ @Override public int removeAll(final IntPredicate predicate) { int removed = 0; final int last = this.tail; final int bufLen = this.buffer.length; final int[] buffer = this.buffer; int from, to; from = to = this.head; try { for (from = to = this.head; from != last; from = ((from + 1 == bufLen) ? 0 : from + 1)) { if (predicate.apply(buffer[from])) { removed++; continue; } if (to != from) { buffer[to] = buffer[from]; } to = ((to + 1 == bufLen) ? 0 : to + 1); } } finally { // Keep the deque in consistent state even if the predicate throws an exception. for (; from != last; from = ((from + 1 == bufLen) ? 0 : from + 1)) { if (to != from) { buffer[to] = buffer[from]; } to = ((to + 1 == bufLen) ? 0 : to + 1); } this.tail = to; } return removed; } /** * {@inheritDoc} */ @Override public boolean contains(final int e) { final int fromIndex = this.head; final int toIndex = this.tail; final int[] buffer = this.buffer; for (int i = fromIndex; i != toIndex; i = ((i + 1 == buffer.length) ? 0 : i + 1)) { if (((e) == (buffer[i]))) { return true; } } return false; } /** * {@inheritDoc} */ @Override public int hashCode() { int h = 1; final int fromIndex = this.head; final int toIndex = this.tail; final int[] buffer = this.buffer; for (int i = fromIndex; i != toIndex; i = ((i + 1 == buffer.length) ? 0 : i + 1)) { h = 31 * h + Internals.rehash(buffer[i]); } return h; } /** * {@inheritDoc} */ @Override /* */ public boolean equals(final Object obj) { if (obj != null) { if (obj == this) { return true; } if (obj instanceof IntDeque) { final IntDeque other = (IntDeque) obj; if (other.size() != this.size()) { return false; } final int fromIndex = this.head; final int[] buffer = this.buffer; int i = fromIndex; //request a pooled iterator final Iterator it = other.iterator(); IntCursor c; while (it.hasNext()) { c = it.next(); if (!((c.value) == (buffer[i]))) { //if iterator was pooled, recycled it if (it instanceof AbstractIterator) { ((AbstractIterator) it).release(); } return false; } i = ((i + 1 == buffer.length) ? 0 : i + 1); } return true; } //end if IntDeque else if (obj instanceof IntIndexedContainer) { final IntIndexedContainer other = (IntIndexedContainer) obj; return other.size() == this.size() && allIndexesEqual(this, (IntIndexedContainer) other, this.size()); } } return false; } /** * Compare index-aligned IntIndexedContainer objects */ private boolean allIndexesEqual( final IntIndexedContainer b1, final IntIndexedContainer b2, final int length) { for (int i = 0; i < length; i++) { final int o1 = b1.get(i); final int o2 = b2.get(i); if (!((o1) == (o2))) { return false; } } return true; } /** * Returns a new object of this class with no need to declare generic type (shortcut * instead of using a constructor). */ public static/* */ IntArrayDeque newInstance() { return new IntArrayDeque(); } /** * Returns a new object of this class with no need to declare generic type (shortcut * instead of using a constructor). */ public static/* */ IntArrayDeque newInstanceWithCapacity(final int initialCapacity) { return new IntArrayDeque(initialCapacity); } /** * Create a new deque by pushing a variable number of arguments to the end of it. */ public static/* */ IntArrayDeque from(final int... elements) { final IntArrayDeque coll = new IntArrayDeque(elements.length); coll.addLast(elements); return coll; } /** * Create a new deque by pushing a variable number of arguments to the end of it. */ public static/* */ IntArrayDeque from(final IntArrayDeque container) { return new IntArrayDeque(container); } //////////////////////////// /** * In-place sort the dequeue from [beginIndex, endIndex[ * by natural ordering (smaller first) * @param beginIndex the start index to be sorted * @param endIndex the end index to be sorted (excluded) */ public void sort(int beginIndex, int endIndex) { assert endIndex <= size(); if (endIndex - beginIndex > 1) { IntSort.quicksort(this, beginIndex, endIndex); } } /** * In-place sort the dequeue from [beginIndex, endIndex[ * using a IntComparator *

* This routine uses Dual-pivot Quicksort, from [Yaroslavskiy 2009] *

* @param beginIndex the start index to be sorted * @param endIndex the end index to be sorted (excluded) */ public void sort( final int beginIndex, final int endIndex, IntComparator comp) { assert endIndex <= size(); if (endIndex - beginIndex > 1) { IntSort.quicksort(this, beginIndex, endIndex, comp); } } /** * In-place sort the whole dequeue by natural ordering (smaller first) *

* This routine uses Dual-pivot Quicksort, from [Yaroslavskiy 2009]. *

* @param beginIndex * @param endIndex */ public void sort() { if (size() > 1) { compactBeforeSorting(); IntSort.quicksort(buffer, head, tail); } } //////////////////////////// /** * In-place sort the whole dequeue * using a IntComparator *

* This routine uses Dual-pivot Quicksort, from [Yaroslavskiy 2009] *

*/ public void sort( IntComparator comp) { if (size() > 1) { compactBeforeSorting(); IntSort.quicksort(this.buffer, this.head, this.tail, comp); } } /** * IntIndexedContainer methods */ /** * {@inheritDoc} */ @Override public void add(final int e1) { addLast(e1); } /** * Beware: This operation is not supported. */ @Override public void insert(final int index, final int e1) { throw new UnsupportedOperationException("insert(final int index, final int e1) operation is not supported on IntArrayDeque"); } /** * {@inheritDoc} * The position is relative to the head, * i.e w.r.t the {@link IntIndexedContainer}, index 0 is the head of the queue, size() - 1 is the last element position. */ @Override public int set(final int index, final int e1) { assert (index >= 0 && index < size()) : "Index " + index + " out of bounds [" + 0 + ", " + size() + ")."; final int indexInBuffer = ((index + this.head < this.buffer.length) ? index + this.head : index + this.head - this.buffer.length); final int previous = this.buffer[indexInBuffer]; this.buffer[indexInBuffer] = e1; return previous; } /** * {@inheritDoc} * The position is relative to the head, * i.e w.r.t the {@link IntIndexedContainer}, index 0 is the head of the queue, size() - 1 is the last element position. */ @Override public int get(final int index) { assert (index >= 0 && index < size()) : "Index " + index + " out of bounds [" + 0 + ", " + size() + ")."; return this.buffer[((index + this.head < this.buffer.length) ? index + this.head : index + this.head - this.buffer.length)]; } /** * {@inheritDoc} * The position is relative to the head, * i.e w.r.t the {@link IntIndexedContainer}, index 0 is the head of the queue, size() - 1 is the last element position. */ @Override public int remove(final int index) { assert (index >= 0 && index < size()) : "Index " + index + " out of bounds [" + 0 + ", " + size() + ")."; final int indexInBuffer = ((index + this.head < this.buffer.length) ? index + this.head : index + this.head - this.buffer.length); final int previous = this.buffer[indexInBuffer]; removeAtBufferIndex(indexInBuffer); return previous; } /** * Beware: This operation is not supported. */ @Override public void removeRange(final int fromIndex, final int toIndex) { throw new UnsupportedOperationException("removeRange(final int fromIndex, final int toIndex) operation is not supported on IntArrayDeque"); } /** * convert the internal {@link #buffer} index to equivalent {@link #IntIndexedContainer} * position. * @param bufferIndex * @return */ private int bufferIndexToPosition(final int bufferIndex) { int pos = -1; if (bufferIndex >= 0) { pos = bufferIndex - this.head; if (pos < 0) { //fold it pos += this.buffer.length; } } return pos; } }