All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.carrotsearch.hppcrt.maps.ByteFloatHashMap Maven / Gradle / Ivy

Go to download

High Performance Primitive Collections Realtime (fork of HPPC from Carrotsearch) Fundamental data structures (maps, sets, lists, queues, heaps, sorts) generated for combinations of object and primitive types to conserve JVM memory and speed up execution. The Realtime fork intends to extend the existing collections, by tweaking to remove any dynamic allocations at runtime, and to obtain low variance execution times whatever the input nature.

There is a newer version: 0.7.5
Show newest version
package com.carrotsearch.hppcrt.maps;

import com.carrotsearch.hppcrt.*;
import com.carrotsearch.hppcrt.cursors.*;
import com.carrotsearch.hppcrt.predicates.*;
import com.carrotsearch.hppcrt.procedures.*;
import com.carrotsearch.hppcrt.hash.*;

  
  
  
// If RH is defined, RobinHood Hashing is in effect :
  

/**
 * A hash map of byte to float, implemented using open
 * addressing with linear probing for collision resolution.
 *
 * 

* The internal buffers of this implementation ({@link #keys}, {@link #values}), * are always allocated to the nearest size that is a power of two. When * the capacity exceeds the given load factor, the buffer size is doubled. *

* *

Important note. The implementation uses power-of-two tables and linear * probing, which may cause poor performance (many collisions) if hash values are * not properly distributed. * * * * * */ @javax.annotation.Generated( date = "2016-01-27T20:51:57+0100", value = "KTypeVTypeHashMap.java") public class ByteFloatHashMap implements ByteFloatMap, Cloneable { protected float defaultValue = (0f); /** * Hash-indexed array holding all keys. *

* Direct map iteration: iterate {keys[i], values[i]} for i in [0; keys.length[ where keys[i] != 0/null, then also * {0/null, {@link #allocatedDefaultKeyValue} } is in the map if {@link #allocatedDefaultKey} = true. *

*/ public byte [] keys; /** * Hash-indexed array holding all values associated to the keys. * stored in {@link #keys}. */ public float [] values; /** * True if key = 0/null is in the map. */ public boolean allocatedDefaultKey = false; /** * if allocatedDefaultKey = true, contains the associated V to the key = 0/null */ public float allocatedDefaultKeyValue; /** * Cached number of assigned slots in {@link #keys}. */ protected int assigned; /** * The load factor for this map (fraction of allocated slots * before the buffers must be rehashed or reallocated). */ protected final double loadFactor; /** * Resize buffers when {@link #keys} hits this value. */ private int resizeAt; /** * Per-instance size perturbation * introduced in rehashing to create a unique key distribution. */ private final int perturbation = Containers.randomSeed32(); /** * Default constructor: Creates a hash map with the default capacity of {@link Containers#DEFAULT_EXPECTED_ELEMENTS}, * load factor of {@link HashContainers#DEFAULT_LOAD_FACTOR}. * *

See class notes about hash distribution importance.

*/ public ByteFloatHashMap() { this(Containers.DEFAULT_EXPECTED_ELEMENTS); } /** * Creates a hash map with the given initial capacity, default load factor of * {@link HashContainers#DEFAULT_LOAD_FACTOR}. * *

See class notes about hash distribution importance.

* * @param initialCapacity Initial capacity (greater than zero and automatically * rounded to the next power of two). */ public ByteFloatHashMap(final int initialCapacity) { this(initialCapacity, HashContainers.DEFAULT_LOAD_FACTOR); } /** * Creates a hash map with the given initial capacity, * load factor. * * @param loadFactor The load factor (greater than zero and smaller than 1). */ public ByteFloatHashMap(final int initialCapacity, final double loadFactor) { this.loadFactor = loadFactor; //take into account of the load factor to guarantee no reallocations before reaching initialCapacity. allocateBuffers(HashContainers.minBufferSize(initialCapacity, loadFactor)); } /** * Create a hash map from all key-value pairs of another container. */ public ByteFloatHashMap(final ByteFloatAssociativeContainer container) { this(container.size()); putAll(container); } /** * {@inheritDoc} */ @Override public float put(byte key, float value) { if (((key) == (byte)0)) { if (this.allocatedDefaultKey) { final float previousValue = this.allocatedDefaultKeyValue; this.allocatedDefaultKeyValue = value; return previousValue; } this.allocatedDefaultKeyValue = value; this.allocatedDefaultKey = true; return this.defaultValue; } final int mask = this.keys.length - 1; final byte[] keys = ((this.keys)); int slot = (BitMixer.mix((key) , this.perturbation)) & mask; byte existing; while (!((existing = keys[slot]) == (byte)0)) { if ( ((((key)) == ((existing))))) { final float oldValue = ((this.values[slot])); this.values[slot] = value; return oldValue; } slot = (slot + 1) & mask; } //end while // Check if we need to grow. If so, reallocate new data, fill in the last element // and rehash. if (this.assigned == this.resizeAt) { expandAndPut(key, value, slot); } else { this.assigned++; keys[slot] = key; values[slot] = value; } return this.defaultValue; } /** * {@inheritDoc} */ @Override public int putAll(final ByteFloatAssociativeContainer container) { return putAll((Iterable) container); } /** * {@inheritDoc} */ @Override public int putAll(final Iterable iterable) { final int count = this.size(); for (final ByteFloatCursor c : iterable) { put(c.key, c.value); } return this.size() - count; } /** * {@inheritDoc} */ @Override public boolean putIfAbsent(final byte key, final float value) { if (!containsKey(key)) { put(key, value); return true; } return false; } /** * If key exists, putValue is inserted into the map, * otherwise any existing value is incremented by additionValue. * * @param key * The key of the value to adjust. * @param putValue * The value to put if key does not exist. * @param incrementValue * The value to add to the existing value if key exists. * @return Returns the current value associated with key (after * changes). */ @SuppressWarnings("cast") @Override public float putOrAdd(final byte key, float putValue, final float incrementValue) { if (containsKey(key)) { putValue = get(key); putValue = (float) (((putValue) + (incrementValue))); } put(key, putValue); return putValue; } /** * Adds incrementValue to any existing value for the given key * or inserts incrementValue if key did not previously exist. * * @param key The key of the value to adjust. * @param incrementValue The value to put or add to the existing value if key exists. * @return Returns the current value associated with key (after changes). */ @Override public float addTo(final byte key, final float incrementValue) { return putOrAdd(key, incrementValue, incrementValue); } /** * Expand the internal storage buffers (capacity) and rehash. */ private void expandAndPut(final byte pendingKey, final float pendingValue, final int freeSlot) { assert this.assigned == this.resizeAt; //default sentinel value is never in the keys[] array, so never trigger reallocs assert !((pendingKey) == (byte)0); // Try to allocate new buffers first. If we OOM, it'll be now without // leaving the data structure in an inconsistent state. final byte[] oldKeys = ((this.keys)); final float[] oldValues = ((this.values)); allocateBuffers(HashContainers.nextBufferSize(this.keys.length, this.assigned, this.loadFactor)); // We have succeeded at allocating new data so insert the pending key/value at // the free slot in the old arrays before rehashing. this.assigned++; oldKeys[freeSlot] = pendingKey; oldValues[freeSlot] = pendingValue; //for inserts final int mask = this.keys.length - 1; byte key = ((byte)0); float value = (0f); int slot = -1; final byte[] keys = ((this.keys)); final float[] values = ((this.values)); //iterate all the old arrays to add in the newly allocated buffers //It is important to iterate backwards to minimize the conflict chain length ! final int perturb = this.perturbation; for (int i = oldKeys.length; --i >= 0;) { //only consider non-empty slots, of course if (!((key = oldKeys[i]) == (byte)0)) { value = oldValues[i]; slot = (BitMixer.mix((key) , (perturb))) & mask; //similar to put(), except all inserted keys are known to be unique. while ((!(((keys)[(slot)]) == (byte)0))) { slot = (slot + 1) & mask; } //end while keys[slot] = key; values[slot] = value; } } } /** * Allocate internal buffers for a given capacity. * * @param capacity New capacity (must be a power of two). */ @SuppressWarnings("boxing") private void allocateBuffers(final int capacity) { try { final byte[] keys = (new byte[(capacity)]); final float[] values = (new float[(capacity)]); this.keys = keys; this.values = values; //allocate so that there is at least one slot that remains allocated = false //this is compulsory to guarantee proper stop in searching loops this.resizeAt = HashContainers.expandAtCount(capacity, this.loadFactor); } catch (final OutOfMemoryError e) { throw new BufferAllocationException( "Not enough memory to allocate buffers to grow from %d -> %d elements", e, (this.keys == null) ? 0 : this.keys.length, capacity); } } /** * {@inheritDoc} */ @Override public float remove(final byte key) { if (((key) == (byte)0)) { if (this.allocatedDefaultKey) { final float previousValue = this.allocatedDefaultKeyValue; this.allocatedDefaultKey = false; return previousValue; } return this.defaultValue; } final int mask = this.keys.length - 1; final byte[] keys = ((this.keys)); int slot = (BitMixer.mix((key) , this.perturbation)) & mask; byte existing; while (!((existing = keys[slot]) == (byte)0) ) { if (((((key)) == ((existing))))) { final float value = ((this.values[slot])); shiftConflictingKeys(slot); return value; } slot = (slot + 1) & mask; } //end while true return this.defaultValue; } /** * Shift all the slot-conflicting keys allocated to (and including) slot. */ private void shiftConflictingKeys(int gapSlot) { final int mask = this.keys.length - 1; final byte[] keys = ((this.keys)); final float[] values = ((this.values)); final int perturb = this.perturbation; // Perform shifts of conflicting keys to fill in the gap. int distance = 0; while (true) { final int slot = (gapSlot + (++distance)) & mask; final byte existing = keys[slot]; final float existingValue = values[slot]; if (((existing) == (byte)0)) { break; } final int idealSlotModMask = (BitMixer.mix((existing) , (perturb))) & mask; //original HPPC code: shift = (slot - idealSlot) & mask; //equivalent to shift = (slot & mask - idealSlot & mask) & mask; //since slot and idealSlotModMask are already folded, we have : final int shift = (slot - idealSlotModMask) & mask; if (shift >= distance) { // Entry at this position was originally at or before the gap slot. // Move the conflict-shifted entry to the gap's position and repeat the procedure // for any entries to the right of the current position, treating it // as the new gap. keys[gapSlot] = existing; values[gapSlot] = existingValue; gapSlot = slot; distance = 0; } } //end while // Mark the last found gap slot without a conflict as empty. keys[gapSlot] = ((byte)0); /* */ this.assigned--; } /** * {@inheritDoc} */ @SuppressWarnings("unchecked") @Override public int removeAll(final ByteContainer other) { final int before = this.size(); //1) other is a ByteLookupContainer, so with fast lookup guarantees //and is bigger than this, so take advantage of both and iterate over this //and test other elements by their contains(). if (other.size() >= before && other instanceof ByteLookupContainer) { if (this.allocatedDefaultKey) { if (other.contains(((byte)0))) { this.allocatedDefaultKey = false; } } final byte[] keys = ((this.keys)); for (int i = 0; i < keys.length;) { byte existing; if (!((existing = keys[i]) == (byte)0) && other.contains(existing)) { shiftConflictingKeys(i); // Shift, do not increment slot. } else { i++; } } } else { //2) Do not use contains() from container, which may lead to O(n**2) execution times, //so it iterate linearly and call remove() from map which is O(1). for (final ByteCursor c : other) { remove(((c.value))); } } return before - this.size(); } /** * {@inheritDoc} */ @Override public int removeAll(final BytePredicate predicate) { final int before = this.size(); if (this.allocatedDefaultKey) { if (predicate.apply(((byte)0))) { this.allocatedDefaultKey = false; } } final byte[] keys = ((this.keys)); for (int i = 0; i < keys.length;) { byte existing; if (!((existing = keys[i]) == (byte)0) && predicate.apply(existing)) { shiftConflictingKeys(i); // Shift, do not increment slot. } else { i++; } } return before - this.size(); } /** * {@inheritDoc} */ @Override public int removeAll(final ByteFloatPredicate predicate) { final int before = this.size(); if (this.allocatedDefaultKey) { if (predicate.apply(((byte)0), this.allocatedDefaultKeyValue)) { this.allocatedDefaultKey = false; } } final byte[] keys = ((this.keys)); final float[] values = ((this.values)); for (int i = 0; i < keys.length;) { byte existing; if (!((existing = keys[i]) == (byte)0) && predicate.apply(existing, values[i])) { shiftConflictingKeys(i); // Shift, do not increment slot. } else { i++; } } return before - this.size(); } /** * {@inheritDoc} */ @Override public float get(final byte key) { if (((key) == (byte)0)) { if (this.allocatedDefaultKey) { return this.allocatedDefaultKeyValue; } return this.defaultValue; } final int mask = this.keys.length - 1; final byte[] keys = ((this.keys)); int slot = (BitMixer.mix((key) , this.perturbation)) & mask; byte existing; while (!((existing = keys[slot]) == (byte)0) ) { if (((((key)) == ((existing))))) { return ((this.values[slot])); } slot = (slot + 1) & mask; } //end while true return this.defaultValue; } /** * {@inheritDoc} */ @Override public boolean containsKey(final byte key) { if (((key) == (byte)0)) { return this.allocatedDefaultKey; } final int mask = this.keys.length - 1; final byte[] keys = ((this.keys)); int slot = (BitMixer.mix((key) , this.perturbation)) & mask; byte existing; while (!((existing = keys[slot]) == (byte)0) ) { if (((((key)) == ((existing))))) { return true; } slot = (slot + 1) & mask; } //end while true return false; } /** * {@inheritDoc} */ @Override public void clear() { this.assigned = 0; // States are always cleared. this.allocatedDefaultKey = false; //Faster than Arrays.fill(keys, null); // Help the GC. ByteArrays.blankArray(this.keys, 0, this.keys.length); } /** * {@inheritDoc} */ @Override public int size() { return this.assigned + (this.allocatedDefaultKey ? 1 : 0); } /** * {@inheritDoc} */ @Override public int capacity() { return this.resizeAt; } /** * {@inheritDoc} * *

Note that an empty container may still contain many deleted keys (that occupy buffer * space). Adding even a single element to such a container may cause rehashing.

*/ @Override public boolean isEmpty() { return size() == 0; } /** * {@inheritDoc} */ @Override public int hashCode() { int h = 0; if (this.allocatedDefaultKey) { h += BitMixer.mix(this.allocatedDefaultKeyValue); } final byte[] keys = ((this.keys)); final float[] values = ((this.values)); for (int i = keys.length; --i >= 0;) { byte existing; if (!((existing = keys[i]) == (byte)0)) { h += BitMixer.mix(existing) ^ BitMixer.mix(values[i]); } } return h; } /** * {@inheritDoc} */ @Override public boolean equals(final Object obj) { if (obj != null) { if (obj == this) { return true; } //must be of the same class, subclasses are not comparable if (obj.getClass() != this.getClass()) { return false; } /* */ ByteFloatHashMap other = (ByteFloatHashMap) obj; //must be of the same size if (other.size() != this.size()) { return false; } final EntryIterator it = this.iterator(); while (it.hasNext()) { final ByteFloatCursor c = it.next(); if (!other.containsKey(c.key)) { //recycle it.release(); return false; } final float otherValue = other.get(c.key); if (!(Float.floatToIntBits((c.value)) == Float.floatToIntBits((otherValue)))) { //recycle it.release(); return false; } } //end while return true; } return false; } /** * An iterator implementation for {@link #iterator}. * Holds a ByteFloatCursor returning * (key, value, index) = (byte key, float value, index the position in keys {@link ByteFloatHashMap#keys}, or keys.length for key = 0/null) */ public final class EntryIterator extends AbstractIterator { public final ByteFloatCursor cursor; public EntryIterator() { this.cursor = new ByteFloatCursor(); this.cursor.index = -2; } /** * Iterate backwards w.r.t the buffer, to * minimize collision chains when filling another hash container (ex. with putAll()) */ @Override protected ByteFloatCursor fetch() { if (this.cursor.index == ByteFloatHashMap.this.keys.length + 1) { if (ByteFloatHashMap.this.allocatedDefaultKey) { this.cursor.index = ByteFloatHashMap.this.keys.length; this.cursor.key = ((byte)0); this.cursor.value = ByteFloatHashMap.this.allocatedDefaultKeyValue; return this.cursor; } //no value associated with the default key, continue iteration... this.cursor.index = ByteFloatHashMap.this.keys.length; } int i = this.cursor.index - 1; while (i >= 0 && !(!(((((ByteFloatHashMap.this.keys)))[(i)]) == (byte)0))) { i--; } if (i == -1) { return done(); } this.cursor.index = i; this.cursor.key = ((ByteFloatHashMap.this.keys[i])); this.cursor.value = ((ByteFloatHashMap.this.values[i])); return this.cursor; } } /** * internal pool of EntryIterator */ protected final IteratorPool entryIteratorPool = new IteratorPool( new ObjectFactory() { @Override public EntryIterator create() { return new EntryIterator(); } @Override public void initialize(final EntryIterator obj) { obj.cursor.index = ByteFloatHashMap.this.keys.length + 1; } @Override public void reset(final EntryIterator obj) { } }); /** * {@inheritDoc} */ @Override public EntryIterator iterator() { //return new EntryIterator(); return this.entryIteratorPool.borrow(); } /** * {@inheritDoc} */ @Override public T forEach(final T procedure) { if (this.allocatedDefaultKey) { procedure.apply(((byte)0), this.allocatedDefaultKeyValue); } final byte[] keys = ((this.keys)); final float[] values = ((this.values)); //Iterate in reverse for side-stepping the longest conflict chain //in another hash, in case apply() is actually used to fill another hash container. for (int i = keys.length - 1; i >= 0; i--) { byte existing; if (!((existing = keys[i]) == (byte)0)) { procedure.apply(existing, values[i]); } } return procedure; } /** * {@inheritDoc} */ @Override public T forEach(final T predicate) { if (this.allocatedDefaultKey) { if (!predicate.apply(((byte)0), this.allocatedDefaultKeyValue)) { return predicate; } } final byte[] keys = ((this.keys)); final float[] values = ((this.values)); //Iterate in reverse for side-stepping the longest conflict chain //in another hash, in case apply() is actually used to fill another hash container. for (int i = keys.length - 1; i >= 0; i--) { byte existing; if (!((existing = keys[i]) == (byte)0)) { if (!predicate.apply(existing, values[i])) { break; } } } //end for return predicate; } /** * {@inheritDoc} * @return a new KeysCollection view of the keys of this map. */ @Override public KeysCollection keys() { return new KeysCollection(); } /** * A view of the keys inside this map. */ public final class KeysCollection extends AbstractByteCollection implements ByteLookupContainer { private final ByteFloatHashMap owner = ByteFloatHashMap.this; @Override public boolean contains(final byte e) { return containsKey(e); } @Override public T forEach(final T procedure) { if (this.owner.allocatedDefaultKey) { procedure.apply(((byte)0)); } final byte[] keys = ((this.owner.keys)); //Iterate in reverse for side-stepping the longest conflict chain //in another hash, in case apply() is actually used to fill another hash container. for (int i = keys.length - 1; i >= 0; i--) { byte existing; if (!((existing = keys[i]) == (byte)0)) { procedure.apply(existing); } } return procedure; } @Override public T forEach(final T predicate) { if (this.owner.allocatedDefaultKey) { if (!predicate.apply(((byte)0))) { return predicate; } } final byte[] keys = ((this.owner.keys)); //Iterate in reverse for side-stepping the longest conflict chain //in another hash, in case apply() is actually used to fill another hash container. for (int i = keys.length - 1; i >= 0; i--) { byte existing; if (!((existing = keys[i]) == (byte)0)) { if (!predicate.apply(existing)) { break; } } } return predicate; } /** * {@inheritDoc} */ @Override public KeysIterator iterator() { //return new KeysIterator(); return this.keyIteratorPool.borrow(); } /** * {@inheritDoc} */ @Override public int size() { return this.owner.size(); } /** * {@inheritDoc} */ @Override public int capacity() { return this.owner.capacity(); } @Override public void clear() { this.owner.clear(); } @Override public int removeAll(final BytePredicate predicate) { return this.owner.removeAll(predicate); } @Override public int removeAll(final byte e) { final boolean hasKey = this.owner.containsKey(e); int result = 0; if (hasKey) { this.owner.remove(e); result = 1; } return result; } /** * internal pool of KeysIterator */ protected final IteratorPool keyIteratorPool = new IteratorPool( new ObjectFactory() { @Override public KeysIterator create() { return new KeysIterator(); } @Override public void initialize(final KeysIterator obj) { obj.cursor.index = ByteFloatHashMap.this.keys.length + 1; } @Override public void reset(final KeysIterator obj) { } }); @Override public byte[] toArray(final byte[] target) { int count = 0; if (this.owner.allocatedDefaultKey) { target[count++] = ((byte)0); } final byte[] keys = ((this.owner.keys)); for (int i = 0; i < keys.length; i++) { byte existing; if (!((existing = keys[i]) == (byte)0)) { target[count++] = existing; } } assert count == this.owner.size(); return target; } }; /** * An iterator over the set of keys. * Holds a ByteCursor returning (value, index) = (byte key, index the position in buffer {@link ByteFloatHashMap#keys}, or keys.length for key = 0/null.) */ public final class KeysIterator extends AbstractIterator { public final ByteCursor cursor; public KeysIterator() { this.cursor = new ByteCursor(); this.cursor.index = -2; } /** * Iterate backwards w.r.t the buffer, to * minimize collision chains when filling another hash container (ex. with putAll()) */ @Override protected ByteCursor fetch() { if (this.cursor.index == ByteFloatHashMap.this.keys.length + 1) { if (ByteFloatHashMap.this.allocatedDefaultKey) { this.cursor.index = ByteFloatHashMap.this.keys.length; this.cursor.value = ((byte)0); return this.cursor; } //no value associated with the default key, continue iteration... this.cursor.index = ByteFloatHashMap.this.keys.length; } int i = this.cursor.index - 1; while (i >= 0 && !(!(((((ByteFloatHashMap.this.keys)))[(i)]) == (byte)0))) { i--; } if (i == -1) { return done(); } this.cursor.index = i; this.cursor.value = ((ByteFloatHashMap.this.keys[i])); return this.cursor; } } /** * {@inheritDoc} * @return a new ValuesCollection view of the values of this map. */ @Override public ValuesCollection values() { return new ValuesCollection(); } /** * A view over the set of values of this map. */ public final class ValuesCollection extends AbstractFloatCollection { private final ByteFloatHashMap owner = ByteFloatHashMap.this; /** * {@inheritDoc} */ @Override public int size() { return this.owner.size(); } /** * {@inheritDoc} */ @Override public int capacity() { return this.owner.capacity(); } @Override public boolean contains(final float value) { if (this.owner.allocatedDefaultKey && (Float.floatToIntBits((value)) == Float.floatToIntBits((this.owner.allocatedDefaultKeyValue)))) { return true; } // This is a linear scan over the values, but it's in the contract, so be it. final byte[] keys = ((this.owner.keys)); final float[] values = ((this.owner.values)); for (int slot = 0; slot < keys.length; slot++) { if ((!(((keys)[(slot)]) == (byte)0)) && (Float.floatToIntBits((value)) == Float.floatToIntBits((values[slot])))) { return true; } } return false; } @Override public T forEach(final T procedure) { if (this.owner.allocatedDefaultKey) { procedure.apply(this.owner.allocatedDefaultKeyValue); } final byte[] keys = ((this.owner.keys)); final float[] values = ((this.owner.values)); for (int slot = 0; slot < keys.length; slot++) { if ((!(((keys)[(slot)]) == (byte)0))) { procedure.apply(values[slot]); } } return procedure; } @Override public T forEach(final T predicate) { if (this.owner.allocatedDefaultKey) { if (!predicate.apply(this.owner.allocatedDefaultKeyValue)) { return predicate; } } final byte[] keys = ((this.owner.keys)); final float[] values = ((this.owner.values)); for (int slot = 0; slot < keys.length; slot++) { if ((!(((keys)[(slot)]) == (byte)0))) { if (!predicate.apply(values[slot])) { break; } } } return predicate; } @Override public ValuesIterator iterator() { // return new ValuesIterator(); return this.valuesIteratorPool.borrow(); } /** * {@inheritDoc} * Indeed removes all the (key,value) pairs matching * (key ? , e) with the same e, from the map. */ @Override public int removeAll(final float e) { final int before = this.owner.size(); if (this.owner.allocatedDefaultKey) { if ((Float.floatToIntBits((e)) == Float.floatToIntBits((this.owner.allocatedDefaultKeyValue)))) { this.owner.allocatedDefaultKey = false; } } final byte[] keys = ((this.owner.keys)); final float[] values = ((this.owner.values)); for (int slot = 0; slot < keys.length;) { if ((!(((keys)[(slot)]) == (byte)0)) && (Float.floatToIntBits((e)) == Float.floatToIntBits((values[slot])))) { shiftConflictingKeys(slot); // Shift, do not increment slot. } else { slot++; } } return before - this.owner.size(); } /** * {@inheritDoc} * Indeed removes all the (key,value) pairs matching * the predicate for the values, from the map. */ @Override public int removeAll(final FloatPredicate predicate) { final int before = this.owner.size(); if (this.owner.allocatedDefaultKey) { if (predicate.apply(this.owner.allocatedDefaultKeyValue)) { this.owner.allocatedDefaultKey = false; } } final byte[] keys = ((this.owner.keys)); final float[] values = ((this.owner.values)); for (int slot = 0; slot < keys.length;) { if ((!(((keys)[(slot)]) == (byte)0)) && predicate.apply(values[slot])) { shiftConflictingKeys(slot); // Shift, do not increment slot. } else { slot++; } } return before - this.owner.size(); } /** * {@inheritDoc} * Alias for clear() the whole map. */ @Override public void clear() { this.owner.clear(); } /** * internal pool of ValuesIterator */ protected final IteratorPool valuesIteratorPool = new IteratorPool( new ObjectFactory() { @Override public ValuesIterator create() { return new ValuesIterator(); } @Override public void initialize(final ValuesIterator obj) { obj.cursor.index = ByteFloatHashMap.this.keys.length + 1; } @Override public void reset(final ValuesIterator obj) { } }); @Override public float[] toArray(final float[] target) { int count = 0; if (this.owner.allocatedDefaultKey) { target[count++] = this.owner.allocatedDefaultKeyValue; } final byte[] keys = ((this.owner.keys)); final float[] values = ((this.owner.values)); for (int i = 0; i < values.length; i++) { if ((!(((keys)[(i)]) == (byte)0))) { target[count++] = values[i]; } } assert count == this.owner.size(); return target; } } /** * An iterator over the set of values. * Holds a ByteCursor returning (value, index) = (float value, index the position in buffer {@link ByteFloatHashMap#values}, * or values.length for value = {@link ByteFloatHashMap#allocatedDefaultKeyValue}). */ public final class ValuesIterator extends AbstractIterator { public final FloatCursor cursor; public ValuesIterator() { this.cursor = new FloatCursor(); this.cursor.index = -2; } /** * Iterate backwards w.r.t the buffer, to * minimize collision chains when filling another hash container (ex. with putAll()) */ @Override protected FloatCursor fetch() { if (this.cursor.index == ByteFloatHashMap.this.values.length + 1) { if (ByteFloatHashMap.this.allocatedDefaultKey) { this.cursor.index = ByteFloatHashMap.this.values.length; this.cursor.value = ByteFloatHashMap.this.allocatedDefaultKeyValue; return this.cursor; } //no value associated with the default key, continue iteration... this.cursor.index = ByteFloatHashMap.this.keys.length; } int i = this.cursor.index - 1; while (i >= 0 && !(!(((((ByteFloatHashMap.this.keys)))[(i)]) == (byte)0))) { i--; } if (i == -1) { return done(); } this.cursor.index = i; this.cursor.value = ((ByteFloatHashMap.this.values[i])); return this.cursor; } } /** * {@inheritDoc} */ @Override public ByteFloatHashMap clone() { //clone to size() to prevent some cases of exponential sizes, final ByteFloatHashMap cloned = new ByteFloatHashMap(this.size(), this.loadFactor); //We must NOT clone because of independent perturbations seeds cloned.putAll(this); return cloned; } /** * Convert the contents of this map to a human-friendly string. */ @Override public String toString() { final StringBuilder buffer = new StringBuilder(); buffer.append("["); boolean first = true; for (final ByteFloatCursor cursor : this) { if (!first) { buffer.append(", "); } buffer.append(cursor.key); buffer.append("=>"); buffer.append(cursor.value); first = false; } buffer.append("]"); return buffer.toString(); } /** * Creates a hash map from two index-aligned arrays of key-value pairs. Default load factor is used. */ public static ByteFloatHashMap from(final byte[] keys, final float[] values) { if (keys.length != values.length) { throw new IllegalArgumentException("Arrays of keys and values must have an identical length."); } final ByteFloatHashMap map = new ByteFloatHashMap(keys.length); for (int i = 0; i < keys.length; i++) { map.put(keys[i], values[i]); } return map; } /** * Create a hash map from another associative container. (constructor shortcut) Default load factor is used. */ public static ByteFloatHashMap from( final ByteFloatAssociativeContainer container) { return new ByteFloatHashMap(container); } /** * Create a new hash map without providing the full generic signature * (constructor shortcut). */ public static ByteFloatHashMap newInstance() { return new ByteFloatHashMap(); } /** * Create a new hash map with initial capacity and load factor control. * (constructor shortcut). */ public static ByteFloatHashMap newInstance(final int initialCapacity, final double loadFactor) { return new ByteFloatHashMap(initialCapacity, loadFactor); } /** * Returns the "default value" value used in containers methods returning * "default value" */ @Override public float getDefaultValue() { return this.defaultValue; } /** * Set the "default value" value to be used in containers methods returning * "default value" */ @Override public void setDefaultValue(final float defaultValue) { this.defaultValue = defaultValue; } //Test for existence in template }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy