
com.google.cloud.genomics.dataflow.functions.JoinNonVariantSegmentsWithVariants Maven / Gradle / Ivy
/*
* Copyright (C) 2015 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
* in compliance with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*/
package com.google.cloud.genomics.dataflow.functions;
import com.google.cloud.dataflow.sdk.options.Default;
import com.google.cloud.dataflow.sdk.options.Description;
import com.google.cloud.dataflow.sdk.options.PipelineOptions;
import com.google.cloud.dataflow.sdk.transforms.DoFn;
import com.google.cloud.dataflow.sdk.transforms.GroupByKey;
import com.google.cloud.dataflow.sdk.transforms.PTransform;
import com.google.cloud.dataflow.sdk.transforms.ParDo;
import com.google.cloud.dataflow.sdk.values.KV;
import com.google.cloud.dataflow.sdk.values.PCollection;
import com.google.cloud.genomics.utils.OfflineAuth;
import com.google.cloud.genomics.utils.ShardBoundary;
import com.google.cloud.genomics.utils.grpc.VariantStreamIterator;
import com.google.cloud.genomics.utils.grpc.VariantUtils;
import com.google.common.base.Function;
import com.google.common.base.Preconditions;
import com.google.common.collect.Iterables;
import com.google.common.collect.Lists;
import com.google.common.collect.Ordering;
import com.google.genomics.v1.StreamVariantsRequest;
import com.google.genomics.v1.StreamVariantsResponse;
import com.google.genomics.v1.Variant;
import com.google.genomics.v1.Variant.Builder;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
/**
* The transforms in this class convert data with non-variant segments (such as data that was in
* source format Genome VCF (gVCF) or Complete Genomics) to variant-only data with calls from
* non-variant-segments merged into the variants with which they overlap.
*
* This is currently done only for SNP variants. Indels and structural variants are left as-is.
*/
public class JoinNonVariantSegmentsWithVariants {
public static interface Options extends PipelineOptions {
@Description("If querying a dataset with non-variant segments (such as Complete Genomics data "
+ "or data in Genome VCF (gVCF) format), specify this flag so that the pipeline correctly "
+ "takes into account non-variant segment records that overlap variants within the dataset.")
@Default.Boolean(false)
boolean getHasNonVariantSegments();
void setHasNonVariantSegments(boolean hasNonVariantSegments);
@Description("Genomic window \"bin\" size to use for data containing non-variant segments when "
+ "joining those non-variant segment records with variant records.")
@Default.Integer(1000)
int getBinSize();
void setBinSize(int binSize);
public static class Methods {
public static void validateOptions(Options options) {
Preconditions.checkArgument(0 < options.getBinSize(), "binSize must be greater than zero");
}
}
}
/**
* Use this transform when working with entire chromosomes or the whole genome.
*
* This transform assumes the use of STRICT shard boundary for the variant retrieval that has occurred
* upstream so that no duplicate records will occur within a "bin".
*
* The amount of RAM needed during the combine step is controlled by the --binSize option.
*
* Compared to the RetrieveAndCombineTransform, this transform has:
* PROS
* - separate control of shard size for data retrieved from the Genomics API verus bin size
* over which we combine variants
* - upstream we were able to perform fewer requests to Genomics API since each stream (shard)
* can be very large
* - less total data pulled from Genomics API, since redundant data is only pulled at shard
* boundaries and there are fewer of those
* CONS
* - uses a shuffle
*/
public static class BinShuffleAndCombineTransform extends PTransform, PCollection> {
/**
* @param input PCollection of variants to process.
* @return PCollection of variant-only Variant objects with calls from non-variant-segments
* merged into the SNP variants with which they overlap.
*/
@Override
public PCollection apply(PCollection input) {
return input
.apply(ParDo.of(new BinVariantsFn()))
.apply(GroupByKey., Variant>create())
.apply(ParDo.of(new RetrieveWindowOfVariantsFn()))
.apply(ParDo.of(new CombineVariantsFn()));
}
static final class BinVariantsFn extends DoFn, Variant>> {
public static final long getStartBin(int binSize, Variant variant) {
// Round down to the nearest integer
return Math.round(Math.floor(variant.getStart() / binSize));
}
public static final long getEndBin(int binSize, Variant variant) {
// Round down to the nearest integer
return Math.round(Math.floor(variant.getEnd() / binSize));
}
@Override
public void processElement(ProcessContext context) {
Options options =
context.getPipelineOptions().as(Options.class);
Variant variant = context.element();
long startBin = getStartBin(options.getBinSize(), variant);
long endBin =
VariantUtils.IS_NON_VARIANT_SEGMENT.apply(variant) ? getEndBin(options.getBinSize(),
variant) : startBin;
for (long bin = startBin; bin <= endBin; bin++) {
context.output(KV.of(KV.of(variant.getReferenceName(), bin), variant));
}
}
}
static final class RetrieveWindowOfVariantsFn extends
DoFn, Iterable>, Iterable> {
@Override
public void processElement(ProcessContext context) {
// The upper bound on number of variants in the iterable is dependent upon the binSize
// used in the prior step to construct the key.
KV, Iterable> kv = context.element();
context.output(kv.getValue());
}
}
}
/**
* Use this transform when working with a collection of sites across the genome.
*
* The amount of RAM needed during the combine step is controlled by the number of
* base pairs between the start and end position of each site.
* Compared to the BinShuffleAndCombineTransform, this transform has:
* PROS
* - no shuffle!
* CONS
* - more requests to the Genomics API since we have a separate stream per site
* - potentially more duplicate data pulled if the sites are near each other
*/
public static class RetrieveAndCombineTransform extends PTransform, PCollection> {
private final OfflineAuth auth;
private String fields;
/**
* @param auth The OfflineAuth to use for the request.
* @param fields Which fields to include in a partial response or null for all.
*/
public RetrieveAndCombineTransform(OfflineAuth auth, String fields) {
super();
this.auth = auth;
this.fields = fields;
}
@Override
public PCollection apply(PCollection input) {
return input
.apply(ParDo.of(new RetrieveFn(auth, fields)))
.apply(ParDo.of(new CombineVariantsFn()));
}
static final class RetrieveFn extends DoFn> {
private final OfflineAuth auth;
private String fields;
public RetrieveFn(OfflineAuth auth, String fields) {
super();
this.auth = auth;
this.fields = fields;
}
@Override
public void processElement(DoFn>.ProcessContext context)
throws Exception {
Iterator iter = VariantStreamIterator.enforceShardBoundary(auth, context.element(),
ShardBoundary.Requirement.NON_VARIANT_OVERLAPS, fields);
if (iter.hasNext()) {
// We do have some data overlapping this site.
List> allVariantsForRequest = new ArrayList<>();
while (iter.hasNext()) {
allVariantsForRequest.add(iter.next().getVariantsList());
}
context.output(Iterables.concat(allVariantsForRequest));
}
}
}
}
/**
* This DoFn converts data with non-variant segments (such as data that was in
* source format Genome VCF (gVCF) or Complete Genomics) to variant-only data with calls from
* non-variant-segments merged into the variants with which they overlap.
*
* This is currently done only for SNP variants. Indels and structural variants are left as-is.
*/
public static final class CombineVariantsFn extends DoFn, Variant> {
/**
* Dev note: this code aims to minimize the amount of data held in memory. It should only
* be the current variant we are considering and any non-variant segments that overlap it.
*/
@Override
public void processElement(ProcessContext context) throws Exception {
List records = Lists.newArrayList(context.element());
// The sort order is critical here so that candidate overlapping reference matching blocks
// occur prior to any variants they may overlap.
Collections.sort(records, NON_VARIANT_SEGMENT_COMPARATOR);
// The upper bound on potential overlaps is the sample size plus the number of
// block records that occur between actual variants.
List blockRecords = new LinkedList<>();
for (Variant record : records) {
if (!VariantUtils.IS_NON_VARIANT_SEGMENT.apply(record)) {
// Dataflow does not allow the output of modified input items, so we make a copy and
// modify that, if applicable.
Builder updatedRecord = Variant.newBuilder(record);
// TODO: determine and implement the correct criteria for overlaps of non-SNP variants
if (VariantUtils.IS_SNP.apply(record)) {
for (Iterator iterator = blockRecords.iterator(); iterator.hasNext();) {
Variant blockRecord = iterator.next();
if (isOverlapping(blockRecord, record)) {
updatedRecord.addAllCalls(blockRecord.getCallsList());
} else {
// Remove the current element from the iterator and the list since it is
// left of the genomic region we are currently working on due to our sort.
iterator.remove();
}
}
}
// Emit this variant and move on (no need to hang onto it in memory).
context.output(updatedRecord.build());
} else {
blockRecords.add(record);
}
}
}
static final Ordering BY_START = Ordering.natural().onResultOf(
new Function() {
@Override
public Long apply(Variant variant) {
return variant.getStart();
}
});
static final Ordering BY_FIRST_OF_ALTERNATE_BASES = Ordering.natural()
.nullsFirst().onResultOf(new Function() {
@Override
public String apply(Variant variant) {
if (null == variant.getAlternateBasesList() || variant.getAlternateBasesList().isEmpty()) {
return null;
}
return variant.getAlternateBases(0);
}
});
// Special-purpose comparator for use in dealing with both variant and non-variant segment data.
// Sort by start position ascending and ensure that if a variant and a ref-matching block are at
// the same position, the non-variant segment record comes first.
static final Comparator NON_VARIANT_SEGMENT_COMPARATOR = BY_START
.compound(BY_FIRST_OF_ALTERNATE_BASES);
static final boolean isOverlapping(Variant blockRecord, Variant variant) {
return blockRecord.getStart() <= variant.getStart()
&& blockRecord.getEnd() >= variant.getStart() + 1;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy