All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.collect.ConcurrentHashMultiset Maven / Gradle / Ivy

Go to download

Guava is a suite of core and expanded libraries that include utility classes, google's collections, io classes, and much much more.

There is a newer version: 33.1.0-jre
Show newest version
/*
 * Copyright (C) 2007 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.collect;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.collect.CollectPreconditions.checkNonnegative;
import static com.google.common.collect.CollectPreconditions.checkRemove;

import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.collect.Serialization.FieldSetter;
import com.google.common.math.IntMath;
import com.google.common.primitives.Ints;
import com.google.errorprone.annotations.CanIgnoreReturnValue;
import com.google.j2objc.annotations.WeakOuter;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.util.Collection;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.atomic.AtomicInteger;
import org.checkerframework.checker.nullness.qual.Nullable;

/**
 * A multiset that supports concurrent modifications and that provides atomic versions of most
 * {@code Multiset} operations (exceptions where noted). Null elements are not supported.
 *
 * 

See the Guava User Guide article on {@code * Multiset}. * * @author Cliff L. Biffle * @author mike nonemacher * @since 2.0 */ @GwtIncompatible public final class ConcurrentHashMultiset extends AbstractMultiset implements Serializable { /* * The ConcurrentHashMultiset's atomic operations are implemented primarily in terms of * AtomicInteger's atomic operations, with some help from ConcurrentMap's atomic operations on * creation and removal (including automatic removal of zeroes). If the modification of an * AtomicInteger results in zero, we compareAndSet the value to zero; if that succeeds, we remove * the entry from the Map. If another operation sees a zero in the map, it knows that the entry is * about to be removed, so this operation may remove it (often by replacing it with a new * AtomicInteger). */ /** The number of occurrences of each element. */ private final transient ConcurrentMap countMap; // This constant allows the deserialization code to set a final field. This holder class // makes sure it is not initialized unless an instance is deserialized. private static class FieldSettersHolder { static final FieldSetter COUNT_MAP_FIELD_SETTER = Serialization.getFieldSetter(ConcurrentHashMultiset.class, "countMap"); } /** * Creates a new, empty {@code ConcurrentHashMultiset} using the default initial capacity, load * factor, and concurrency settings. */ public static ConcurrentHashMultiset create() { // TODO(schmoe): provide a way to use this class with other (possibly arbitrary) // ConcurrentMap implementors. One possibility is to extract most of this class into // an AbstractConcurrentMapMultiset. return new ConcurrentHashMultiset(new ConcurrentHashMap()); } /** * Creates a new {@code ConcurrentHashMultiset} containing the specified elements, using the * default initial capacity, load factor, and concurrency settings. * *

This implementation is highly efficient when {@code elements} is itself a {@link Multiset}. * * @param elements the elements that the multiset should contain */ public static ConcurrentHashMultiset create(Iterable elements) { ConcurrentHashMultiset multiset = ConcurrentHashMultiset.create(); Iterables.addAll(multiset, elements); return multiset; } /** * Creates a new, empty {@code ConcurrentHashMultiset} using {@code countMap} as the internal * backing map. * *

This instance will assume ownership of {@code countMap}, and other code should not maintain * references to the map or modify it in any way. * *

The returned multiset is serializable if the input map is. * * @param countMap backing map for storing the elements in the multiset and their counts. It must * be empty. * @throws IllegalArgumentException if {@code countMap} is not empty * @since 20.0 */ @Beta public static ConcurrentHashMultiset create(ConcurrentMap countMap) { return new ConcurrentHashMultiset(countMap); } @VisibleForTesting ConcurrentHashMultiset(ConcurrentMap countMap) { checkArgument(countMap.isEmpty(), "the backing map (%s) must be empty", countMap); this.countMap = countMap; } // Query Operations /** * Returns the number of occurrences of {@code element} in this multiset. * * @param element the element to look for * @return the nonnegative number of occurrences of the element */ @Override public int count(@Nullable Object element) { AtomicInteger existingCounter = Maps.safeGet(countMap, element); return (existingCounter == null) ? 0 : existingCounter.get(); } /** * {@inheritDoc} * *

If the data in the multiset is modified by any other threads during this method, it is * undefined which (if any) of these modifications will be reflected in the result. */ @Override public int size() { long sum = 0L; for (AtomicInteger value : countMap.values()) { sum += value.get(); } return Ints.saturatedCast(sum); } /* * Note: the superclass toArray() methods assume that size() gives a correct * answer, which ours does not. */ @Override public Object[] toArray() { return snapshot().toArray(); } @Override public T[] toArray(T[] array) { return snapshot().toArray(array); } /* * We'd love to use 'new ArrayList(this)' or 'list.addAll(this)', but * either of these would recurse back to us again! */ private List snapshot() { List list = Lists.newArrayListWithExpectedSize(size()); for (Multiset.Entry entry : entrySet()) { E element = entry.getElement(); for (int i = entry.getCount(); i > 0; i--) { list.add(element); } } return list; } // Modification Operations /** * Adds a number of occurrences of the specified element to this multiset. * * @param element the element to add * @param occurrences the number of occurrences to add * @return the previous count of the element before the operation; possibly zero * @throws IllegalArgumentException if {@code occurrences} is negative, or if the resulting amount * would exceed {@link Integer#MAX_VALUE} */ @CanIgnoreReturnValue @Override public int add(E element, int occurrences) { checkNotNull(element); if (occurrences == 0) { return count(element); } CollectPreconditions.checkPositive(occurrences, "occurences"); while (true) { AtomicInteger existingCounter = Maps.safeGet(countMap, element); if (existingCounter == null) { existingCounter = countMap.putIfAbsent(element, new AtomicInteger(occurrences)); if (existingCounter == null) { return 0; } // existingCounter != null: fall through to operate against the existing AtomicInteger } while (true) { int oldValue = existingCounter.get(); if (oldValue != 0) { try { int newValue = IntMath.checkedAdd(oldValue, occurrences); if (existingCounter.compareAndSet(oldValue, newValue)) { // newValue can't == 0, so no need to check & remove return oldValue; } } catch (ArithmeticException overflow) { throw new IllegalArgumentException( "Overflow adding " + occurrences + " occurrences to a count of " + oldValue); } } else { // In the case of a concurrent remove, we might observe a zero value, which means another // thread is about to remove (element, existingCounter) from the map. Rather than wait, // we can just do that work here. AtomicInteger newCounter = new AtomicInteger(occurrences); if ((countMap.putIfAbsent(element, newCounter) == null) || countMap.replace(element, existingCounter, newCounter)) { return 0; } break; } } // If we're still here, there was a race, so just try again. } } /** * Removes a number of occurrences of the specified element from this multiset. If the multiset * contains fewer than this number of occurrences to begin with, all occurrences will be removed. * * @param element the element whose occurrences should be removed * @param occurrences the number of occurrences of the element to remove * @return the count of the element before the operation; possibly zero * @throws IllegalArgumentException if {@code occurrences} is negative */ /* * TODO(cpovirk): remove and removeExactly currently accept null inputs only * if occurrences == 0. This satisfies both NullPointerTester and * CollectionRemoveTester.testRemove_nullAllowed, but it's not clear that it's * a good policy, especially because, in order for the test to pass, the * parameter must be misleadingly annotated as @Nullable. I suspect that * we'll want to remove @Nullable, add an eager checkNotNull, and loosen up * testRemove_nullAllowed. */ @CanIgnoreReturnValue @Override public int remove(@Nullable Object element, int occurrences) { if (occurrences == 0) { return count(element); } CollectPreconditions.checkPositive(occurrences, "occurences"); AtomicInteger existingCounter = Maps.safeGet(countMap, element); if (existingCounter == null) { return 0; } while (true) { int oldValue = existingCounter.get(); if (oldValue != 0) { int newValue = Math.max(0, oldValue - occurrences); if (existingCounter.compareAndSet(oldValue, newValue)) { if (newValue == 0) { // Just CASed to 0; remove the entry to clean up the map. If the removal fails, // another thread has already replaced it with a new counter, which is fine. countMap.remove(element, existingCounter); } return oldValue; } } else { return 0; } } } /** * Removes exactly the specified number of occurrences of {@code element}, or makes no change if * this is not possible. * *

This method, in contrast to {@link #remove(Object, int)}, has no effect when the element * count is smaller than {@code occurrences}. * * @param element the element to remove * @param occurrences the number of occurrences of {@code element} to remove * @return {@code true} if the removal was possible (including if {@code occurrences} is zero) * @throws IllegalArgumentException if {@code occurrences} is negative */ @CanIgnoreReturnValue public boolean removeExactly(@Nullable Object element, int occurrences) { if (occurrences == 0) { return true; } CollectPreconditions.checkPositive(occurrences, "occurences"); AtomicInteger existingCounter = Maps.safeGet(countMap, element); if (existingCounter == null) { return false; } while (true) { int oldValue = existingCounter.get(); if (oldValue < occurrences) { return false; } int newValue = oldValue - occurrences; if (existingCounter.compareAndSet(oldValue, newValue)) { if (newValue == 0) { // Just CASed to 0; remove the entry to clean up the map. If the removal fails, // another thread has already replaced it with a new counter, which is fine. countMap.remove(element, existingCounter); } return true; } } } /** * Adds or removes occurrences of {@code element} such that the {@link #count} of the element * becomes {@code count}. * * @return the count of {@code element} in the multiset before this call * @throws IllegalArgumentException if {@code count} is negative */ @CanIgnoreReturnValue @Override public int setCount(E element, int count) { checkNotNull(element); checkNonnegative(count, "count"); while (true) { AtomicInteger existingCounter = Maps.safeGet(countMap, element); if (existingCounter == null) { if (count == 0) { return 0; } else { existingCounter = countMap.putIfAbsent(element, new AtomicInteger(count)); if (existingCounter == null) { return 0; } // existingCounter != null: fall through } } while (true) { int oldValue = existingCounter.get(); if (oldValue == 0) { if (count == 0) { return 0; } else { AtomicInteger newCounter = new AtomicInteger(count); if ((countMap.putIfAbsent(element, newCounter) == null) || countMap.replace(element, existingCounter, newCounter)) { return 0; } } break; } else { if (existingCounter.compareAndSet(oldValue, count)) { if (count == 0) { // Just CASed to 0; remove the entry to clean up the map. If the removal fails, // another thread has already replaced it with a new counter, which is fine. countMap.remove(element, existingCounter); } return oldValue; } } } } } /** * Sets the number of occurrences of {@code element} to {@code newCount}, but only if the count is * currently {@code expectedOldCount}. If {@code element} does not appear in the multiset exactly * {@code expectedOldCount} times, no changes will be made. * * @return {@code true} if the change was successful. This usually indicates that the multiset has * been modified, but not always: in the case that {@code expectedOldCount == newCount}, the * method will return {@code true} if the condition was met. * @throws IllegalArgumentException if {@code expectedOldCount} or {@code newCount} is negative */ @CanIgnoreReturnValue @Override public boolean setCount(E element, int expectedOldCount, int newCount) { checkNotNull(element); checkNonnegative(expectedOldCount, "oldCount"); checkNonnegative(newCount, "newCount"); AtomicInteger existingCounter = Maps.safeGet(countMap, element); if (existingCounter == null) { if (expectedOldCount != 0) { return false; } else if (newCount == 0) { return true; } else { // if our write lost the race, it must have lost to a nonzero value, so we can stop return countMap.putIfAbsent(element, new AtomicInteger(newCount)) == null; } } int oldValue = existingCounter.get(); if (oldValue == expectedOldCount) { if (oldValue == 0) { if (newCount == 0) { // Just observed a 0; try to remove the entry to clean up the map countMap.remove(element, existingCounter); return true; } else { AtomicInteger newCounter = new AtomicInteger(newCount); return (countMap.putIfAbsent(element, newCounter) == null) || countMap.replace(element, existingCounter, newCounter); } } else { if (existingCounter.compareAndSet(oldValue, newCount)) { if (newCount == 0) { // Just CASed to 0; remove the entry to clean up the map. If the removal fails, // another thread has already replaced it with a new counter, which is fine. countMap.remove(element, existingCounter); } return true; } } } return false; } // Views @Override Set createElementSet() { final Set delegate = countMap.keySet(); return new ForwardingSet() { @Override protected Set delegate() { return delegate; } @Override public boolean contains(@Nullable Object object) { return object != null && Collections2.safeContains(delegate, object); } @Override public boolean containsAll(Collection collection) { return standardContainsAll(collection); } @Override public boolean remove(Object object) { return object != null && Collections2.safeRemove(delegate, object); } @Override public boolean removeAll(Collection c) { return standardRemoveAll(c); } }; } @Override Iterator elementIterator() { throw new AssertionError("should never be called"); } /** @deprecated Internal method, use {@link #entrySet()}. */ @Deprecated @Override public Set> createEntrySet() { return new EntrySet(); } @Override int distinctElements() { return countMap.size(); } @Override public boolean isEmpty() { return countMap.isEmpty(); } @Override Iterator> entryIterator() { // AbstractIterator makes this fairly clean, but it doesn't support remove(). To support // remove(), we create an AbstractIterator, and then use ForwardingIterator to delegate to it. final Iterator> readOnlyIterator = new AbstractIterator>() { private final Iterator> mapEntries = countMap.entrySet().iterator(); @Override protected Entry computeNext() { while (true) { if (!mapEntries.hasNext()) { return endOfData(); } Map.Entry mapEntry = mapEntries.next(); int count = mapEntry.getValue().get(); if (count != 0) { return Multisets.immutableEntry(mapEntry.getKey(), count); } } } }; return new ForwardingIterator>() { private @Nullable Entry last; @Override protected Iterator> delegate() { return readOnlyIterator; } @Override public Entry next() { last = super.next(); return last; } @Override public void remove() { checkRemove(last != null); ConcurrentHashMultiset.this.setCount(last.getElement(), 0); last = null; } }; } @Override public Iterator iterator() { return Multisets.iteratorImpl(this); } @Override public void clear() { countMap.clear(); } @WeakOuter private class EntrySet extends AbstractMultiset.EntrySet { @Override ConcurrentHashMultiset multiset() { return ConcurrentHashMultiset.this; } /* * Note: the superclass toArray() methods assume that size() gives a correct * answer, which ours does not. */ @Override public Object[] toArray() { return snapshot().toArray(); } @Override public T[] toArray(T[] array) { return snapshot().toArray(array); } private List> snapshot() { List> list = Lists.newArrayListWithExpectedSize(size()); // Not Iterables.addAll(list, this), because that'll forward right back here. Iterators.addAll(list, iterator()); return list; } } /** @serialData the ConcurrentMap of elements and their counts. */ private void writeObject(ObjectOutputStream stream) throws IOException { stream.defaultWriteObject(); stream.writeObject(countMap); } private void readObject(ObjectInputStream stream) throws IOException, ClassNotFoundException { stream.defaultReadObject(); @SuppressWarnings("unchecked") // reading data stored by writeObject ConcurrentMap deserializedCountMap = (ConcurrentMap) stream.readObject(); FieldSettersHolder.COUNT_MAP_FIELD_SETTER.set(this, deserializedCountMap); } private static final long serialVersionUID = 1; }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy