All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.javascript.jscomp.UnreachableCodeElimination Maven / Gradle / Ivy

Go to download

Closure Compiler is a JavaScript optimizing compiler. It parses your JavaScript, analyzes it, removes dead code and rewrites and minimizes what's left. It also checks syntax, variable references, and types, and warns about common JavaScript pitfalls. It is used in many of Google's JavaScript apps, including Gmail, Google Web Search, Google Maps, and Google Docs.

The newest version!
/*
 * Copyright 2008 The Closure Compiler Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.javascript.jscomp;

import static com.google.common.base.Preconditions.checkState;

import com.google.javascript.jscomp.ControlFlowGraph.Branch;
import com.google.javascript.jscomp.graph.DiGraph.DiGraphEdge;
import com.google.javascript.jscomp.graph.DiGraph.DiGraphNode;
import com.google.javascript.jscomp.graph.GraphReachability;
import com.google.javascript.rhino.Node;
import java.util.ArrayDeque;
import java.util.Deque;
import java.util.List;
import java.util.logging.Level;
import java.util.logging.Logger;

/**
 * Removes dead code from a parse tree.
 *
 * 

The kinds of dead code that this pass removes are: * *

    *
  • Any code following a return statement, such as the {@code alert} call in:
    * {@code if (x) { return; alert('unreachable'); }}. *
  • Statements that have no side effects, such as:
    * {@code a.b.MyClass.prototype.propertyName;} or {@code true;}.
    * That first kind of statement sometimes appears intentionally, so that prototype properties * can be annotated using JSDoc without actually being initialized. *
*/ // TODO(dimvar): Besides dead code after returns, this pass removes useless live // code such as breaks/continues/returns and stms w/out side effects. // These things don't require reachability info, consider making them their own // pass or putting them in some other, more related pass. class UnreachableCodeElimination implements CompilerPass { private static final Logger logger = Logger.getLogger(UnreachableCodeElimination.class.getName()); private final AbstractCompiler compiler; private boolean codeChanged; UnreachableCodeElimination(AbstractCompiler compiler) { this.compiler = compiler; } @Override public void process(Node externs, Node toplevel) { checkState(compiler.getLifeCycleStage().isNormalized()); NodeTraversal.traverse(compiler, compiler.getJsRoot(), new EliminationInChangedFunctionsPass()); } private final class EliminationInChangedFunctionsPass extends NodeTraversal.AbstractChangedScopeCallback { @Override public void enterChangedScopeRoot(AbstractCompiler compiler, Node root) { // Computes the control flow graph. ControlFlowGraph cfg = ControlFlowAnalysis.builder().setCompiler(compiler).setCfgRoot(root).computeCfg(); new GraphReachability<>(cfg).compute(cfg.getEntry().getValue()); if (root.isFunction()) { root = root.getLastChild(); } do { codeChanged = false; NodeTraversal.traverse(compiler, root, new EliminationPass(cfg)); } while (codeChanged); } } private class EliminationPass implements NodeTraversal.Callback { private final ControlFlowGraph cfg; /** * Keep track of nodes that contain a sequence of statements. * *

As soon as we find one statement is unreachable, we can skip traversing the rest. */ private final Deque statementSequenceParentContextStack = new ArrayDeque<>(); private EliminationPass(ControlFlowGraph cfg) { this.cfg = cfg; } @Override public boolean shouldTraverse(NodeTraversal nodeTraversal, Node n, Node parent) { if (n.isExport()) { // TODO(b/129564961): We should be exploring EXPORTs. We don't because their descendants // have side-effects that `AstAnalyzer.mayHaveSideEffects` doesn't recognize. Since this // pass currently runs after exports are removed anyway, this isn't yet an issue. return false; } else if (n.isFunction()) { // Do not descend into function scopes, because they won't be included in our // current CFG. return false; } StatementSequenceParentContext statementSequenceParentContext = statementSequenceParentContextStack.peek(); if (statementSequenceParentContext != null && statementSequenceParentContext.statementParentNode == parent) { // We're looking at a statement node in the current statement parent if (statementSequenceParentContext.firstUnreachableStatementNode != null) { // A previous statement is unreachable, so there's no point looking at this one. return false; } if (isDefinitelyUnreachable(n)) { statementSequenceParentContext.firstUnreachableStatementNode = n; return false; } } if (isStatementSequenceParent(n)) { statementSequenceParentContextStack.push(new StatementSequenceParentContext(n)); } return true; } @Override public void visit(NodeTraversal t, Node n, Node parent) { StatementSequenceParentContext statementSequenceParentContext = statementSequenceParentContextStack.peek(); if (statementSequenceParentContext != null && statementSequenceParentContext.statementParentNode == n) { // We're now visiting the statement parent, itself. statementSequenceParentContextStack.pop(); Node unreachableStatementNode = statementSequenceParentContext.firstUnreachableStatementNode; while (unreachableStatementNode != null) { final Node nextStatement = unreachableStatementNode.getNext(); removeStatementNode(unreachableStatementNode); unreachableStatementNode = nextStatement; } return; } if (parent == null || n.isFunction() || n.isScript()) { return; } DiGraphNode gNode = cfg.getNode(n); if (gNode == null) { // Not in CFG. return; } if (gNode.getAnnotation() != GraphReachability.REACHABLE || !compiler.getAstAnalyzer().mayHaveSideEffects(n)) { removeDeadExprStatementSafely(n); return; } tryRemoveUnconditionalBranching(n); } private boolean isDefinitelyUnreachable(Node n) { DiGraphNode gNode = getCfgNodeForStatement(n); if (gNode == null) { // Not in CFG. // We may have traversed into a scope not covered by the CFG, // or maybe just looking at a node the CFG doesn't consider part of the control flow. return false; } return gNode.getAnnotation() != GraphReachability.REACHABLE; } private DiGraphNode getCfgNodeForStatement(Node statement) { switch (statement.getToken()) { case DO: // CFG flows first into the statement within the do {} while (); // So we should consider that CFG node to represent the whole statement. return cfg.getNode(statement.getFirstChild()); case LABEL: // A LABEL is never actually executed, so get what it labels. // We use recursion because it is possible to label a label. return getCfgNodeForStatement(statement.getLastChild()); default: return cfg.getNode(statement); } } /** * Tries to remove n if it is an unconditional branch node (break, continue, or return) and the * target of n is the same as the follow of n. * *

That is, if removing n preserves the control flow. Also if n targets another unconditional * branch, this function will recursively try to remove the target branch as well. The reason * why we want to cascade this removal is because we only run this pass once. If we have code * such as * *

break -> break -> break * *

where all 3 breaks are useless, then the order of removal matters. When we first look at * the first break, we see that it branches to the 2nd break. However, if we remove the last * break, the 2nd break becomes useless and finally the first break becomes useless as well. */ @SuppressWarnings("fallthrough") private void tryRemoveUnconditionalBranching(Node n) { /* * For each unconditional branching control flow node, check to see * if the ControlFlowAnalysis.computeFollowNode of that node is same as * the branching target. If it is, the branch node is safe to be removed. * * This is not as clever as MinimizeExitPoints because it doesn't do any * if-else conversion but it handles more complicated switch statements * much more nicely. */ // If n is null the target is the end of the function, nothing to do. if (n == null) { return; } DiGraphNode gNode = cfg.getNode(n); if (gNode == null) { return; } switch (n.getToken()) { case RETURN: if (n.hasChildren()) { break; } case BREAK: case CONTINUE: // We are looking for a control flow changing statement that always // branches to the same node. If after removing it control still // branches to the same node, it is safe to remove. List> outEdges = gNode.getOutEdges(); if (outEdges.size() == 1 && // If there is a next node, this jump is not useless. (n.getNext() == null || n.getNext().isFunction())) { checkState(outEdges.get(0).getValue() == Branch.UNCOND); Node fallThrough = computeFollowing(n); Node nextCfgNode = outEdges.get(0).getDestination().getValue(); if (nextCfgNode == fallThrough && !inFinally(n.getParent(), n)) { logicallyRemoveNode(n); } } break; default: break; } } private boolean inFinally(Node parent, Node child) { if (parent == null || parent.isFunction()) { return false; } else if (NodeUtil.isTryFinallyNode(parent, child)) { return true; } else { return inFinally(parent.getParent(), parent); } } private Node computeFollowing(Node n) { Node next = ControlFlowAnalysis.computeFollowNode(n); while (next != null && next.isBlock()) { if (next.hasChildren()) { next = next.getFirstChild(); } else { next = computeFollowing(next); } } return next; } private void removeDeadExprStatementSafely(Node n) { Node parent = n.getParent(); if (n.isEmpty() || (n.isBlock() && !n.hasChildren())) { // Not always trivial to remove, let FoldConstants work its magic later. return; } // Every expression in a FOR-IN or FOR-OF header looks side effect free on its own. if (NodeUtil.isEnhancedFor(parent)) { return; } switch (n.getToken()) { // In the CFG, the only incoming edges of the DO node are from // breaks/continues and the condition. The edge from the previous // statement connects directly to the body of the DO. // // Removing an unreachable DO node is messy b/c it means we still have // to execute one iteration of the body. If the DO's body has breaks in // the middle, it can get even more tricky and code size might actually // increase. case DO: case EXPORT: return; case BLOCK: // BLOCKs are used in several ways including wrapping CATCH // blocks in TRYs if (parent.isTry() && NodeUtil.isTryCatchNodeContainer(n)) { return; } break; case CATCH: Node tryNode = parent.getParent(); NodeUtil.maybeAddFinally(tryNode); break; default: break; } if (n.isVar() && !n.getFirstChild().hasChildren()) { // Very unlikely case, Consider this: // File 1: {throw 1} // File 2: {var x} // The node var x is unreachable in the global scope. // Before we remove the node, redeclareVarsInsideBranch // would basically move var x to the beginning of File 2, // which resulted in zero changes to the AST but triggered // reportCodeChange(). // Instead, we should just ignore dead variable declarations. return; } logicallyRemoveNode(n); } /** * Logically, put possibly not actually, remove a node. * *

This method uses {@code NodeUtil.removeChild()} which has a lot of logic to handle * attempts to remove nodes that are structurally required by the AST. It will make a change * that has the behavior of the node being removed, even though what actually is done to the AST * may not be simple removal of the node. */ private void logicallyRemoveNode(Node n) { codeChanged = true; NodeUtil.redeclareVarsInsideBranch(n); compiler.reportChangeToEnclosingScope(n); if (logger.isLoggable(Level.FINE)) { logger.fine("Removing " + n); } NodeUtil.removeChild(n.getParent(), n); NodeUtil.markFunctionsDeleted(n, compiler); } } /** * Remove a statement that is part of a sequence of statements. * *

Unlike {@code logicallyRemoveNode()}, this method will always remove the node. */ private void removeStatementNode(Node statementNode) { codeChanged = true; NodeUtil.redeclareVarsInsideBranch(statementNode); compiler.reportChangeToEnclosingScope(statementNode); if (logger.isLoggable(Level.FINE)) { logger.fine("Removing " + statementNode); } // Since we know we have a statement within a statement sequence here, simply detaching it is // always safe. statementNode.detach(); NodeUtil.markFunctionsDeleted(statementNode, compiler); } /** Is {@code n} a {@code Node} that has a sequence of statements as its children? */ private static boolean isStatementSequenceParent(Node n) { // A LABEL is a statement parent, but only for a single statement. // For historical reasons, the second child of a TRY is a BLOCK with a single CATCH child. // We don't want to treat the CATCH as if it were a statement. return NodeUtil.isStatementParent(n) && !n.isLabel() && !NodeUtil.isTryCatchNodeContainer(n); } /** One of these is created for each node whose children are a sequence of statements. */ private static class StatementSequenceParentContext { final Node statementParentNode; /** Set non-null only if we discover that some statements are unreachable. */ Node firstUnreachableStatementNode = null; public StatementSequenceParentContext(Node statementParentNode) { this.statementParentNode = statementParentNode; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy