
com.google.common.truth.PrimitiveFloatArraySubject Maven / Gradle / Ivy
/*
* Copyright (c) 2014 Google, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.common.truth;
import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.truth.Correspondence.tolerance;
import static com.google.common.truth.FloatSubject.checkTolerance;
import static com.google.common.truth.MathUtil.equalWithinTolerance;
import static com.google.common.truth.MathUtil.notEqualWithinTolerance;
import com.google.common.collect.Iterables;
import com.google.common.primitives.Floats;
import com.google.errorprone.annotations.CanIgnoreReturnValue;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import javax.annotation.Nullable;
/**
* A Subject for {@code float[]}.
*
* @author Christian Gruber ([email protected])
*/
public final class PrimitiveFloatArraySubject
extends AbstractArraySubject {
PrimitiveFloatArraySubject(FailureMetadata metadata, @Nullable float[] o) {
super(metadata, o);
}
@Override
protected String underlyingType() {
return "float";
}
@Override
protected List listRepresentation() {
return Floats.asList(actual());
}
/**
* A check that the actual array and {@code expected} are arrays of the same length and type,
* containing elements such that each element in {@code expected} is equal to each element in the
* actual array, and in the same position, with element equality defined the same way that {@link
* Arrays#equals(float[], float[])} and {@link Float#equals(Object)} define it (which is different
* to the way that the {@code ==} operator on primitive {@code float} defines it). This method is
* not recommended when the code under test is doing any kind of arithmetic: use {@link
* #usingTolerance} with a suitable tolerance in that case, e.g. {@code
* assertThat(actualArray).usingTolerance(1.0e-5).containsExactly(expectedArray).inOrder()}.
* (Remember that the exact result of floating point arithmetic is sensitive to apparently trivial
* changes such as replacing {@code (a + b) + c} with {@code a + (b + c)}, and that unless {@code
* strictfp} is in force even the result of {@code (a + b) + c} is sensitive to the JVM's choice
* of precision for the intermediate result.) This method is recommended when the code under test
* is specified as either copying values without modification from its input or returning
* well-defined literal or constant values.
*
*
* - It considers {@link Float#POSITIVE_INFINITY}, {@link Float#NEGATIVE_INFINITY}, and {@link
* Float#NaN} to be equal to themselves (contrast with {@code usingTolerance(0.0)} which
* does not).
*
- It does not consider {@code -0.0f} to be equal to {@code 0.0f} (contrast with
* {@code usingTolerance(0.0)} which does).
*
*/
@Override
public void isEqualTo(Object expected) {
float[] actual = actual();
if (actual == expected) {
return; // short-cut.
}
try {
float[] expectedArray = (float[]) expected;
if (!Arrays.equals(actual, expectedArray)) {
fail("is equal to", Floats.asList(expectedArray));
}
} catch (ClassCastException e) {
failWithBadType(expected);
}
}
/**
* A check that the actual array and {@code expected} are arrays of the same length and type,
* containing elements such that each element in {@code expected} is within {@code tolerance} of
* each element in the subject, and in the same position.
*
* Behaviour for non-finite values ({@link Float#POSITIVE_INFINITY POSITIVE_INFINITY}, {@link
* Float#NEGATIVE_INFINITY NEGATIVE_INFINITY}, and {@link Float#NaN NaN}) is as follows: If the
* subject and the object of the assertion are the same array, the test will pass. If not
* (including if one is a clone of the other) then non-finite values are considered not equal so
* the any non-finite value in either argument will cause the test to fail.
*
* @deprecated use {@code usingTolerance(someTolerance).containsExactly(someValues).inOrder()},
* noting the different behaviour for non-finite values
*/
@Deprecated
public void isEqualTo(Object expected, float tolerance) {
float[] actual = actual();
if (actual == expected) {
return; // short-cut.
}
try {
float[] expectedArray = (float[]) expected;
if (expectedArray.length != actual.length) {
failWithRawMessage(
"Arrays are of different lengths. expected: %s, actual %s",
Floats.asList(expectedArray), Floats.asList(actual));
return;
}
List unequalIndices = new ArrayList<>();
for (int i = 0; i < expectedArray.length; i++) {
if (!equalWithinTolerance(actual[i], expectedArray[i], tolerance)) {
unequalIndices.add(i);
}
}
if (!unequalIndices.isEmpty()) {
fail("is equal to", Floats.asList(expectedArray));
return;
}
} catch (ClassCastException e) {
failWithBadType(expected);
}
}
/**
* A check that the actual array and {@code expected} are not arrays of the same length and type,
* containing elements such that each element in {@code expected} is equal to each element in the
* actual array, and in the same position, with element equality defined the same way that {@link
* Arrays#equals(float[], float[])} and {@link Float#equals(Object)} define it (which is different
* to the way that the {@code ==} operator on primitive {@code float} defines it). See {@link
* #isEqualTo(Object)} for advice on when exact equality is recommended.
*
*
* - It considers {@link Float#POSITIVE_INFINITY}, {@link Float#NEGATIVE_INFINITY}, and {@link
* Float#NaN} to be equal to themselves.
*
- It does not consider {@code -0.0} to be equal to {@code 0.0}.
*
*/
@Override
public void isNotEqualTo(Object expected) {
float[] actual = actual();
try {
float[] expectedArray = (float[]) expected;
if (actual == expected || Arrays.equals(actual, expectedArray)) {
failWithRawMessage(
"%s unexpectedly equal to %s.", actualAsString(), Floats.asList(expectedArray));
}
} catch (ClassCastException ignored) {
// If it's not float[] then it's not equal and the test passes.
}
}
/**
* A check that the actual array and {@code expected} are not arrays of the same length and type,
* containing elements such that each element in {@code expected} is within {@code tolerance} of
* each element in the subject, and in the same position.
*
* Behaviour for non-finite values ({@link Float#POSITIVE_INFINITY POSITIVE_INFINITY}, {@link
* Float#NEGATIVE_INFINITY NEGATIVE_INFINITY}, and {@link Float#NaN NaN}) is as follows: If the
* subject and the object of the assertion are the same array, the test will fail. If not
* (including if one is a clone of the other) then non-finite values are considered not equal so
* the any non-finite value in either argument will cause the test to pass.
*
* @deprecated Write a for loop over the values looking for mismatches (see this implementation
* for an example)
*/
@Deprecated
public void isNotEqualTo(Object expectedArray, float tolerance) {
float[] actual = actual();
try {
float[] expected = (float[]) expectedArray;
if (actual == expected) {
failWithRawMessage(
"%s unexpectedly equal to %s.", actualAsString(), Floats.asList(expected));
return;
}
if (expected.length != actual.length) {
return; // Unequal-lengthed arrays are not equal.
}
List unequalIndices = new ArrayList<>();
for (int i = 0; i < expected.length; i++) {
if (!equalWithinTolerance(actual[i], expected[i], tolerance)) {
unequalIndices.add(i);
}
}
if (unequalIndices.isEmpty()) {
failWithRawMessage(
"%s unexpectedly equal to %s.", actualAsString(), Floats.asList(expected));
return;
}
} catch (ClassCastException ignored) {
// Unequal since they are of different types.
}
}
/**
* A partially specified check about an approximate relationship to a {@code float[]} subject
* using a tolerance.
*/
public abstract static class TolerantPrimitiveFloatArrayComparison {
// Prevent subclassing outside of this class
private TolerantPrimitiveFloatArrayComparison() {}
/**
* Fails if the values in the subject were expected to be within the tolerance of the given
* values but were not or if they were expected not to be within the tolerance but
* were. The subject and tolerance are specified earlier in the fluent call chain.
*/
public void of(float... expected) {
ofElementsIn(Floats.asList(expected));
}
/**
* Fails if the values in the subject were expected to be within the tolerance of the given
* values but were not or if they were expected not to be within the tolerance but
* were. The subject and tolerance are specified earlier in the fluent call chain. The values
* will be cast to floats if necessary, which might lose precision.
*/
public abstract void ofElementsIn(Iterable extends Number> expected);
/**
* @throws UnsupportedOperationException always
* @deprecated {@link Object#equals(Object)} is not supported on
* TolerantPrimitiveFloatArrayComparison. If you meant to compare float arrays, use {@link
* #of} or {@link #ofElementsIn} instead.
*/
@Deprecated
@Override
public boolean equals(@Nullable Object o) {
throw new UnsupportedOperationException(
"If you meant to compare float arrays, use .of() or .ofElementsIn() instead.");
}
/**
* @throws UnsupportedOperationException always
* @deprecated {@link Object#hashCode()} is not supported on
* TolerantPrimitiveFloatArrayComparison
*/
@Deprecated
@Override
public int hashCode() {
throw new UnsupportedOperationException("Subject.hashCode() is not supported.");
}
}
/**
* Prepares for a check that the subject and object are arrays both (a) of the same length, and
* (b) where the values at all corresponding positions in each array are finite values within
* {@code tolerance} of each other, that is {@code
* assertThat(actual[i]).isWithin(tolerance).of(expected[i])} passes for all {@code i} (see the
* {@link FloatSubject#isWithin isWithin} assertion for floats).
*
* The check will fail if any value in either the subject array or the object array is {@link
* Float#POSITIVE_INFINITY}, {@link Float#NEGATIVE_INFINITY}, or {@link Float#NaN}.
*
* @param tolerance an inclusive upper bound on the difference between the subject and object
* allowed by the check, which must be a non-negative finite value, i.e. not {@link
* Float#NaN}, {@link Float#POSITIVE_INFINITY}, or negative, including {@code -0.0f}
* @deprecated Use {@link #usingTolerance}, e.g. {@code
* assertThat(floatArray).usingTolerance(1e-5).containsExactly(1.2f, 3.4f, 5.6f).inOrder();}
*/
@Deprecated
public TolerantPrimitiveFloatArrayComparison hasValuesWithin(
final float tolerance) {
return new TolerantPrimitiveFloatArrayComparison() {
@Override
public void ofElementsIn(Iterable extends Number> expected) {
checkTolerance(tolerance);
float[] actual = checkNotNull(actual());
List mismatches = new ArrayList<>();
int expectedCount = 0;
for (Number expectedValue : expected) {
// if expected is longer than actual, we can skip the excess values: this case is covered
// by the length check below
if (expectedCount < actual.length
&& !equalWithinTolerance(
actual[expectedCount], expectedValue.floatValue(), tolerance)) {
mismatches.add(expectedCount);
}
expectedCount++;
}
if (actual.length != expectedCount) {
failWithRawMessage(
"Not true that %s has values within %s of <%s>. Expected length <%s> but got <%s>",
actualAsString(),
tolerance,
Iterables.toString(expected),
expectedCount,
actual.length);
return;
}
if (!mismatches.isEmpty()) {
failWithBadResults(
"has values within " + tolerance + " of",
Iterables.toString(expected),
"differs at indexes",
mismatches);
return;
}
}
};
}
/**
* Prepares for a check that the subject and object are arrays either (a) of the different
* lengths, or (b) of the same length but where the values at at least one corresponding position
* in each array are finite values not within {@code tolerance} of each other, that is {@code
* assertThat(actual[i]).isNotWithin(tolerance).of(expected[i])} passes for at least one {@code i}
* (see the {@link FloatSubject#isNotWithin isNotWithin} assertion for floats).
*
* In the case (b), a pair of subject and object values will not cause the test to pass if
* either of them is {@link Float#POSITIVE_INFINITY}, {@link Float#NEGATIVE_INFINITY}, or {@link
* Float#NaN}.
*
* @param tolerance an exclusive lower bound on the difference between the subject and object
* allowed by the check, which must be a non-negative finite value, i.e. not {@code
* Float.NaN}, {@code Float.POSITIVE_INFINITY}, or negative, including {@code -0.0f}
* @deprecated Write a for loop over the values looking for mismatches (see this implementation
* for an example)
*/
@Deprecated
public TolerantPrimitiveFloatArrayComparison hasValuesNotWithin(
final float tolerance) {
return new TolerantPrimitiveFloatArrayComparison() {
@Override
public void ofElementsIn(Iterable extends Number> expected) {
checkTolerance(tolerance);
float[] actual = checkNotNull(actual());
int expectedCount = 0;
for (Number expectedValue : expected) {
// if expected is longer than actual, we can skip the excess values: this case is covered
// by the length check below
if (expectedCount < actual.length
&& notEqualWithinTolerance(
actual[expectedCount], expectedValue.floatValue(), tolerance)) {
return;
}
expectedCount++;
}
// By the method contract, the assertion passes if the lengths are different. This is so
// that hasValuesNotWithin behaves like isNotEqualTo with a tolerance (and different
// handling of non-finite values).
if (actual.length == expectedCount) {
fail("has values not within " + tolerance + " of", Iterables.toString(expected));
}
}
};
}
/**
* Starts a method chain for a check in which the actual values (i.e. the elements of the array
* under test) are compared to expected elements using a {@link Correspondence} which considers
* values to correspond if they are finite values within {@code tolerance} of each other. The
* check is actually executed by continuing the method chain. For example:
*
*
{@code
* assertThat(actualFloatArray).usingTolerance(1.0e-5f).contains(3.14159f);
* }
*
*
* - It does not consider values to correspond if either value is infinite or NaN.
*
- It considers {@code -0.0f} to be within any tolerance of {@code 0.0f}.
*
- The expected values provided later in the chain will be {@link Number} instances which
* will be converted to floats, which may result in a loss of precision for some numeric
* types.
*
- The subsequent methods in the chain may throw a {@link NullPointerException} if any
* expected {@link Number} instance is null.
*
*
* @param tolerance an inclusive upper bound on the difference between the float values of the
* actual and expected numbers, which must be a non-negative finite value, i.e. not {@link
* Float#NaN}, {@link Float#POSITIVE_INFINITY}, or negative, including {@code -0.0f}
*/
public FloatArrayAsIterable usingTolerance(double tolerance) {
return new FloatArrayAsIterable(tolerance(tolerance), iterableSubject());
}
private static final Correspondence EXACT_EQUALITY_CORRESPONDENCE =
new Correspondence() {
@Override
public boolean compare(Float actual, Number expected) {
return actual.equals(checkedToFloat(expected));
}
@Override
public String toString() {
return "is exactly equal to";
}
};
private static float checkedToFloat(Number expected) {
checkNotNull(expected);
checkArgument(
!(expected instanceof Double),
"Expected value in assertion using exact float equality was a double, which is not "
+ "supported as a double may not have an exact float representation");
checkArgument(
expected instanceof Float || expected instanceof Integer || expected instanceof Long,
"Expected value in assertion using exact float equality was of unsupported type %s "
+ "(it may not have an exact float representation)",
expected.getClass());
if (expected instanceof Integer) {
checkArgument(
Math.abs((Integer) expected) <= 1 << 24,
"Expected value %s in assertion using exact float equality was an int with an absolute "
+ "value greater than 2^24 which has no exact float representation",
expected);
}
if (expected instanceof Long) {
checkArgument(
Math.abs((Long) expected) <= 1L << 24,
"Expected value %s in assertion using exact float equality was a long with an absolute "
+ "value greater than 2^24 which has no exact float representation",
expected);
}
return expected.floatValue();
}
/**
* Starts a method chain for a check in which the actual values (i.e. the elements of the array
* under test) are compared to expected elements using a {@link Correspondence} which considers
* values to correspond if they are exactly equal, with equality defined by {@link Float#equals}.
* This method is not recommended when the code under test is doing any kind of arithmetic:
* use {@link #usingTolerance} with a suitable tolerance in that case. (Remember that the exact
* result of floating point arithmetic is sensitive to apparently trivial changes such as
* replacing {@code (a + b) + c} with {@code a + (b + c)}, and that unless {@code strictfp} is in
* force even the result of {@code (a + b) + c} is sensitive to the JVM's choice of precision for
* the intermediate result.) This method is recommended when the code under test is specified as
* either copying a value without modification from its input or returning a well-defined literal
* or constant value. The check is actually executed by continuing the method chain. For example:
*
* {@code
* assertThat(actualFloatArray).usingExactEquality().contains(3.14159f);
* }
*
* For convenience, some subsequent methods accept expected values as {@link Number} instances.
* These numbers must be either of type {@link Float}, {@link Integer}, or {@link Long}, and if
* they are {@link Integer} or {@link Long} then their absolute values must not exceed 2^24 which
* is 16,777,216. (This restriction ensures that the expected values have exact {@link Float}
* representations: using exact equality makes no sense if they do not.)
*
*
* - It considers {@link Float#POSITIVE_INFINITY}, {@link Float#NEGATIVE_INFINITY}, and {@link
* Float#NaN} to be equal to themselves (contrast with {@code usingTolerance(0.0)} which
* does not).
*
- It does not consider {@code -0.0f} to be equal to {@code 0.0f} (contrast with
* {@code usingTolerance(0.0)} which does).
*
- The subsequent methods in the chain may throw a {@link NullPointerException} if any
* expected {@link Float} instance is null.
*
*/
public FloatArrayAsIterable usingExactEquality() {
return new FloatArrayAsIterable(EXACT_EQUALITY_CORRESPONDENCE, iterableSubject());
}
/**
* A partially specified check for doing assertions on the array similar to the assertions
* supported for {@link Iterable} subjects, in which the elements of the array under test are
* compared to expected elements using either exact or tolerant float equality: see {@link
* #usingExactEquality} and {@link #usingTolerance}. Call methods on this object to actually
* execute the check.
*
* In the exact equality case, the methods on this class which take {@link Number} arguments
* only accept certain instances: again, see {@link #usingExactEquality} for details.
*/
public static final class FloatArrayAsIterable
extends IterableSubject.UsingCorrespondence {
FloatArrayAsIterable(
Correspondence super Float, Number> correspondence, IterableSubject subject) {
super(subject, correspondence);
}
/** As {@link #containsAllOf(Object, Object, Object...)} but taking a primitive float array. */
@CanIgnoreReturnValue
public Ordered containsAllOf(float[] expected) {
return containsAllIn(Floats.asList(expected));
}
/** As {@link #containsAnyOf(Object, Object, Object...)} but taking a primitive float array. */
public void containsAnyOf(float[] expected) {
containsAnyIn(Floats.asList(expected));
}
/** As {@link #containsExactly(Object...)} but taking a primitive float array. */
@CanIgnoreReturnValue
public Ordered containsExactly(float[] expected) {
return containsExactlyElementsIn(Floats.asList(expected));
}
/** As {@link #containsNoneOf(Object, Object, Object...)} but taking a primitive float array. */
public void containsNoneOf(float[] excluded) {
containsNoneIn(Floats.asList(excluded));
}
}
private IterableSubject iterableSubject() {
return internalCustomName() != null
? check().that(listRepresentation()).named(internalCustomName())
: check().that(listRepresentation());
}
}