All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.paukov.combinatorics.util.Util Maven / Gradle / Ivy

Go to download

Very simple java library to generate permutations, combinations and other combinatorial sequences.

The newest version!
/**
 * Combinatorics Library
 * Copyright 2012 Dmytro Paukov [email protected]
 */
package org.paukov.combinatorics.util;

import java.math.BigDecimal;


/**
 * Utility class for combinatorial package
 *
 * @author Dmytro Paukov
 * @version 2.0
 */
public class Util {

  /**
   * Get minimum of three values
   */
  public static int minimum(int a, int b, int c) {
    int mi = a;
    if (b < mi) {
      mi = b;
    }

    if (c < mi) {
      mi = c;
    }

    return mi;
  }

  /**
   * Calculates factorial of the given integer value x
   *
   * @param x Integer value
   */
  public static long factorial(long x) {
    long result = 1;
    for (long i = 2; i <= x; i++) {
      result *= i;
    }
    return result;
  }

  /**
   * Calculates factorial of the given integer value x
   *
   * @param x Integer value
   */
  public static BigDecimal bigFactorial(long x) {
    BigDecimal result = BigDecimal.valueOf(1);
    for (long i = 2; i <= x; i++) {
      result = result.multiply(BigDecimal.valueOf(i));
    }
    return result;
  }

  /**
   * Calculates 2 in power of integer value x
   */
  public static long pow2(long x) {
    if (x < 0) {
      return 1;
    }
    return 1 << x;
  }

  /**
   * Calculates the number of k-combinations (each of size k) from a set with
   * n elements (size n) (also known as the "choose function")
   *
   * @param n Value n
   * @param k Value k
   */
  public static long combination(long n, long k) {
    BigDecimal factorialN = bigFactorial(n);
    BigDecimal factorialK = bigFactorial(k);
    BigDecimal factorialNK = bigFactorial(n-k);
    return factorialN.divide(factorialK.multiply(factorialNK)).longValue();
  }

  /**
   * Calculates greatest common divisor (GCD) of two integer values
   * a and b
   *
   * @param a Value a
   * @param b Value b
   */
  public static long gcd(long a, long b) {
    if (a == 0) {
      return b;
    }
    if (b == 0) {
      return a;
    }
    if (a == b) {
      return a;
    }
    if (a == 1 | b == 1) {
      return 1;
    }
    if ((a % 2 == 0) & (b % 2 == 0)) {
      return 2 * gcd(a / 2, b / 2);
    }
    if ((a % 2 == 0) & (b % 2 != 0)) {
      return gcd(a / 2, b);
    }
    if ((a % 2 != 0) & (b % 2 == 0)) {
      return gcd(a, b / 2);
    }
    return gcd(b, Math.abs(a - b));
  }

  /**
   * Calculates lowest common multiple (LCM) of two integer values
   * a and b
   *
   * @param a Value a
   * @param b Value b
   */
  public static long lcm(long a, long b) {
    return (a * b) / gcd(a, b);
  }

  /**
   * The linear interpolant is the straight line between these points
   *
   * @return y
   */
  public static double linearInterpolation(double x0, double y0, double x1,
      double y1, double x) {
    return y0 + ((y1 - y0) / (x1 - x0)) * (x - x0);
  }

  /**
   * Levenshtein distance is a measure of the similarity between two strings,
   * which we will refer to as the source string source and the
   * target string target. The distance is the number of
   * deletions, insertions, or substitutions required to transform s into t.
   *
   * @param source the source string
   * @param target the target string
   * @return Levenshtein distance
   */
  public static int levenshteinDistance(String source, String target) {

    int d[][]; // matrix
    int n; // length of source
    int m; // length of target
    int i; // iterates through source
    int j; // iterates through target
    char s_i; // ith character of source
    char t_j; // jth character of target
    int cost; // cost

    // Step 1
    n = source.length();
    m = target.length();

    if (n == 0) {
      return m;
    }

    if (m == 0) {
      return n;
    }

    d = new int[n + 1][m + 1];

    // Step 2
    for (i = 0; i <= n; i++) {
      d[i][0] = i;
    }

    for (j = 0; j <= m; j++) {
      d[0][j] = j;
    }

    // Step 3
    for (i = 1; i <= n; i++) {
      s_i = source.charAt(i - 1);

      // Step 4
      for (j = 1; j <= m; j++) {
        t_j = target.charAt(j - 1);

        // Step 5
        if (s_i == t_j) {
          cost = 0;
        } else {
          cost = 1;
        }

        // Step 6
        d[i][j] = Util.minimum(d[i - 1][j] + 1, d[i][j - 1] + 1,
            d[i - 1][j - 1] + cost);
      }
    }

    // Step 7
    return d[n][m];
  }

  /**
   * Calculates the determinant of the matrix a
   */
  public static BigDecimal detCrout(BigDecimal a[][], int n) {
    for (int i = 0; i < n; i++) {
      boolean nonzero = false;
      for (int j = 0; j < n; j++) {
        if (a[i][j].compareTo(new BigDecimal(0)) > 0) {
          nonzero = true;
        }
      }
      if (!nonzero) {
        return BigDecimal.ZERO;
      }
    }

    BigDecimal scaling[] = new BigDecimal[n];
    for (int i = 0; i < n; i++) {
      BigDecimal big = new BigDecimal(0);
      for (int j = 0; j < n; j++) {
        if (a[i][j].abs().compareTo(big) > 0) {
          big = a[i][j].abs();
        }
      }
      scaling[i] = (new BigDecimal(1)).divide(big, 100,
          BigDecimal.ROUND_HALF_EVEN);
    }

    int sign = 1;

    for (int j = 0; j < n; j++) {

      for (int i = 0; i < j; i++) {
        BigDecimal sum = a[i][j];
        for (int k = 0; k < i; k++) {
          sum = sum.subtract(a[i][k].multiply(a[k][j]));
        }
        a[i][j] = sum;
      }

      BigDecimal big = new BigDecimal(0);
      int imax = -1;
      for (int i = j; i < n; i++) {
        BigDecimal sum = a[i][j];
        for (int k = 0; k < j; k++) {
          sum = sum.subtract(a[i][k].multiply(a[k][j]));
        }
        a[i][j] = sum;
        BigDecimal cur = sum.abs();
        cur = cur.multiply(scaling[i]);
        if (cur.compareTo(big) >= 0) {
          big = cur;
          imax = i;
        }
      }

      if (j != imax) {

        for (int k = 0; k < n; k++) {
          BigDecimal t = a[j][k];
          a[j][k] = a[imax][k];
          a[imax][k] = t;
        }

        BigDecimal t = scaling[imax];
        scaling[imax] = scaling[j];
        scaling[j] = t;

        sign = -sign;
      }

      if (j != n - 1) {
        for (int i = j + 1; i < n; i++) {
          a[i][j] = a[i][j].divide(a[j][j], 100,
              BigDecimal.ROUND_HALF_EVEN);
        }
      }

    }

    BigDecimal result = new BigDecimal(1);
    if (sign == -1) {
      result = result.negate();
    }
    for (int i = 0; i < n; i++) {
      result = result.multiply(a[i][i]);
    }

    return result;
  }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy