All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jbox2d.collision.Distance Maven / Gradle / Ivy

There is a newer version: 1.9.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2011, Daniel Murphy
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the  nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL DANIEL MURPHY BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 ******************************************************************************/
package org.jbox2d.collision;

import org.jbox2d.collision.shapes.CircleShape;
import org.jbox2d.collision.shapes.PolygonShape;
import org.jbox2d.collision.shapes.Shape;
import org.jbox2d.common.Mat22;
import org.jbox2d.common.MathUtils;
import org.jbox2d.common.Settings;
import org.jbox2d.common.Vec2;
import org.jbox2d.common.Transform;

// updated to rev 100
/**
 * This is non-static for faster pooling. To get an instance,
 * use the {@link SingletonPool}, don't construct a distance
 * object.
 * 
 * @author Daniel Murphy
 */
public class Distance {
	
	public static int GJK_CALLS = 0;
	public static int GJK_ITERS = 0;
	public static int GJK_MAX_ITERS = 20;

	/**
	 * GJK using Voronoi regions (Christer Ericson) and Barycentric coordinates.
	 */
	private class SimplexVertex {
		public final Vec2 wA = new Vec2(); // support point in shapeA
		public final Vec2 wB = new Vec2(); // support point in shapeB
		public final Vec2 w = new Vec2(); // wB - wA
		public float a; // barycentric coordinate for closest point
		public int indexA; // wA index
		public int indexB; // wB index
		
		public void set(SimplexVertex sv) {
			wA.set(sv.wA);
			wB.set(sv.wB);
			w.set(sv.w);
			a = sv.a;
			indexA = sv.indexA;
			indexB = sv.indexB;
		}
	}
	
	/**
	 *  Used to warm start b2Distance.
	 *  Set count to zero on first call.
	 * @author daniel
	 */
	public static class SimplexCache {
		/** length or area */
		public float metric;
		public int count;
		/** vertices on shape A */
		public final int indexA[] = new int[3];
		/** vertices on shape B */
		public final int indexB[] = new int[3];
		
		public SimplexCache(){
			metric = 0;
			count = 0;
			indexA[0] = Integer.MAX_VALUE;
			indexA[1] = Integer.MAX_VALUE;
			indexA[2] = Integer.MAX_VALUE;
			indexB[0] = Integer.MAX_VALUE;
			indexB[1] = Integer.MAX_VALUE;
			indexB[2] = Integer.MAX_VALUE;
		}

		public void set(SimplexCache sc){
			System.arraycopy(sc.indexA, 0, indexA, 0, indexA.length);
			System.arraycopy(sc.indexB, 0, indexB, 0, indexB.length);
			metric = sc.metric;
			count = sc.count;
		}
	}
	
	private class Simplex {
		public final SimplexVertex m_v1 = new SimplexVertex();
		public final SimplexVertex m_v2 = new SimplexVertex();
		public final SimplexVertex m_v3 = new SimplexVertex();
		public final SimplexVertex vertices[] = {m_v1, m_v2, m_v3};
		public int m_count;
		
		public void readCache(SimplexCache cache, DistanceProxy proxyA, Transform transformA, DistanceProxy proxyB,
				Transform transformB) {
			assert (cache.count <= 3);
			
			// Copy data from cache.
			m_count = cache.count;
			
			for (int i = 0; i < m_count; ++i) {
				SimplexVertex v = vertices[i];
				v.indexA = cache.indexA[i];
				v.indexB = cache.indexB[i];
				Vec2 wALocal = proxyA.getVertex(v.indexA);
				Vec2 wBLocal = proxyB.getVertex(v.indexB);
				Transform.mulToOut(transformA, wALocal, v.wA);
				Transform.mulToOut(transformB, wBLocal, v.wB);
				v.w.set(v.wB).subLocal(v.wA);
				v.a = 0.0f;
			}
			
			// Compute the new simplex metric, if it is substantially different than
			// old metric then flush the simplex.
			if (m_count > 1) {
				float metric1 = cache.metric;
				float metric2 = getMetric();
				if (metric2 < 0.5f * metric1 || 2.0f * metric1 < metric2 || metric2 < Settings.EPSILON) {
					// Reset the simplex.
					m_count = 0;
				}
			}
			
			// If the cache is empty or invalid ...
			if (m_count == 0) {
				SimplexVertex v = vertices[0];
				v.indexA = 0;
				v.indexB = 0;
				Vec2 wALocal = proxyA.getVertex(0);
				Vec2 wBLocal = proxyB.getVertex(0);
				Transform.mulToOut(transformA, wALocal, v.wA);
				Transform.mulToOut(transformB, wBLocal, v.wB);
				v.w.set(v.wB).subLocal(v.wA);
				m_count = 1;
			}
		}
		
		public void writeCache(SimplexCache cache) {
			cache.metric = getMetric();
			cache.count = m_count;
			
			for (int i = 0; i < m_count; ++i) {
				cache.indexA[i] = (vertices[i].indexA);
				cache.indexB[i] = (vertices[i].indexB);
			}
		}
		
		private final Vec2 e12 = new Vec2();
		
		public final void getSearchDirection(final Vec2 out) {
			switch (m_count) {
				case 1 :
					out.set(m_v1.w).negateLocal();
					return;
				case 2 :
					e12.set(m_v2.w).subLocal(m_v1.w);
					// use out for a temp variable real quick
					out.set(m_v1.w).negateLocal();
					float sgn = Vec2.cross(e12, out);
					
					if (sgn > 0f) {
						// Origin is left of e12.
						Vec2.crossToOut(1f, e12, out);
						return;
					}
					else {
						// Origin is right of e12.
						Vec2.crossToOut(e12, 1f, out);
						return;
					}
				default :
					assert (false);
					out.setZero();
					return;
			}
		}
		
		// djm pooled
		private final Vec2 case2 = new Vec2();
		private final Vec2 case22 = new Vec2();
		
		/**
		 * this returns pooled objects. don't keep or modify them
		 */
		public void getClosestPoint(final Vec2 out) {
			switch (m_count) {
				case 0 :
					assert (false);
					out.setZero();
					return;
				case 1 :
					out.set(m_v1.w);
					return;
				case 2 :
					case22.set(m_v2.w).mulLocal(m_v2.a);
					case2.set(m_v1.w).mulLocal(m_v1.a).addLocal(case22);
					out.set(case2);
					return;
				case 3 :
					out.setZero();
					return;
				default :
					assert (false);
					out.setZero();
					return;
			}
		}
		
		// djm pooled, and from above
		private final Vec2 case3 = new Vec2();
		private final Vec2 case33 = new Vec2();
		
		public void getWitnessPoints(Vec2 pA, Vec2 pB) {
			switch (m_count) {
				case 0 :
					assert (false);
					break;
				
				case 1 :
					pA.set(m_v1.wA);
					pB.set(m_v1.wB);
					break;
				
				case 2 :
					case2.set(m_v1.wA).mulLocal(m_v1.a);
					pA.set(m_v2.wA).mulLocal(m_v2.a).addLocal(case2);
					// m_v1.a * m_v1.wA + m_v2.a * m_v2.wA;
					// *pB = m_v1.a * m_v1.wB + m_v2.a * m_v2.wB;
					case2.set(m_v1.wB).mulLocal(m_v1.a);
					pB.set(m_v2.wB).mulLocal(m_v2.a).addLocal(case2);
					
					break;
				
				case 3 :
					pA.set(m_v1.wA).mulLocal(m_v1.a);
					case3.set(m_v2.wA).mulLocal(m_v2.a);
					case33.set(m_v3.wA).mulLocal(m_v3.a);
					pA.addLocal(case3).addLocal(case33);
					pB.set(pA);
					// *pA = m_v1.a * m_v1.wA + m_v2.a * m_v2.wA + m_v3.a * m_v3.wA;
					// *pB = *pA;
					break;
				
				default :
					assert (false);
					break;
			}
		}
		
		// djm pooled, from above
		public float getMetric() {
			switch (m_count) {
				case 0 :
					assert (false);
					return 0.0f;
					
				case 1 :
					return 0.0f;
					
				case 2 :
					return MathUtils.distance(m_v1.w, m_v2.w);
					
				case 3 :
					case3.set(m_v2.w).subLocal(m_v1.w);
					case33.set(m_v3.w).subLocal(m_v1.w);
					// return Vec2.cross(m_v2.w - m_v1.w, m_v3.w - m_v1.w);
					return Vec2.cross(case3, case33);
					
				default :
					assert (false);
					return 0.0f;
			}
		}
		
		// djm pooled from above
		/**
		 * Solve a line segment using barycentric coordinates.
		 */
		public void solve2() {
			// Solve a line segment using barycentric coordinates.
			//
			// p = a1 * w1 + a2 * w2
			// a1 + a2 = 1
			//
			// The vector from the origin to the closest point on the line is
			// perpendicular to the line.
			// e12 = w2 - w1
			// dot(p, e) = 0
			// a1 * dot(w1, e) + a2 * dot(w2, e) = 0
			//
			// 2-by-2 linear system
			// [1 1 ][a1] = [1]
			// [w1.e12 w2.e12][a2] = [0]
			//
			// Define
			// d12_1 = dot(w2, e12)
			// d12_2 = -dot(w1, e12)
			// d12 = d12_1 + d12_2
			//
			// Solution
			// a1 = d12_1 / d12
			// a2 = d12_2 / d12
			final Vec2 w1 = m_v1.w;
			final Vec2 w2 = m_v2.w;
			e12.set(w2).subLocal(w1);
			
			// w1 region
			float d12_2 = -Vec2.dot(w1, e12);
			if (d12_2 <= 0.0f) {
				// a2 <= 0, so we clamp it to 0
				m_v1.a = 1.0f;
				m_count = 1;
				return;
			}
			
			// w2 region
			float d12_1 = Vec2.dot(w2, e12);
			if (d12_1 <= 0.0f) {
				// a1 <= 0, so we clamp it to 0
				m_v2.a = 1.0f;
				m_count = 1;
				m_v1.set(m_v2);
				return;
			}
			
			// Must be in e12 region.
			float inv_d12 = 1.0f / (d12_1 + d12_2);
			m_v1.a = d12_1 * inv_d12;
			m_v2.a = d12_2 * inv_d12;
			m_count = 2;
		}
		
		// djm pooled, and from above
		private final Vec2 e13 = new Vec2();
		private final Vec2 e23 = new Vec2();
		private final Vec2 w1 = new Vec2();
		private final Vec2 w2 = new Vec2();
		private final Vec2 w3 = new Vec2();
		
		/**
		 * Solve a line segment using barycentric coordinates.
* Possible regions:
* - points[2]
* - edge points[0]-points[2]
* - edge points[1]-points[2]
* - inside the triangle */ public void solve3() { w1.set(m_v1.w); w2.set(m_v2.w); w3.set(m_v3.w); // Edge12 // [1 1 ][a1] = [1] // [w1.e12 w2.e12][a2] = [0] // a3 = 0 e12.set(w2).subLocal(w1); float w1e12 = Vec2.dot(w1, e12); float w2e12 = Vec2.dot(w2, e12); float d12_1 = w2e12; float d12_2 = -w1e12; // Edge13 // [1 1 ][a1] = [1] // [w1.e13 w3.e13][a3] = [0] // a2 = 0 e13.set(w3).subLocal(w1); float w1e13 = Vec2.dot(w1, e13); float w3e13 = Vec2.dot(w3, e13); float d13_1 = w3e13; float d13_2 = -w1e13; // Edge23 // [1 1 ][a2] = [1] // [w2.e23 w3.e23][a3] = [0] // a1 = 0 e23.set(w3).subLocal(w2); float w2e23 = Vec2.dot(w2, e23); float w3e23 = Vec2.dot(w3, e23); float d23_1 = w3e23; float d23_2 = -w2e23; // Triangle123 float n123 = Vec2.cross(e12, e13); float d123_1 = n123 * Vec2.cross(w2, w3); float d123_2 = n123 * Vec2.cross(w3, w1); float d123_3 = n123 * Vec2.cross(w1, w2); // w1 region if (d12_2 <= 0.0f && d13_2 <= 0.0f) { m_v1.a = 1.0f; m_count = 1; return; } // e12 if (d12_1 > 0.0f && d12_2 > 0.0f && d123_3 <= 0.0f) { float inv_d12 = 1.0f / (d12_1 + d12_2); m_v1.a = d12_1 * inv_d12; m_v2.a = d12_2 * inv_d12; m_count = 2; return; } // e13 if (d13_1 > 0.0f && d13_2 > 0.0f && d123_2 <= 0.0f) { float inv_d13 = 1.0f / (d13_1 + d13_2); m_v1.a = d13_1 * inv_d13; m_v3.a = d13_2 * inv_d13; m_count = 2; m_v2.set(m_v3); return; } // w2 region if (d12_1 <= 0.0f && d23_2 <= 0.0f) { m_v2.a = 1.0f; m_count = 1; m_v1.set(m_v2); return; } // w3 region if (d13_1 <= 0.0f && d23_1 <= 0.0f) { m_v3.a = 1.0f; m_count = 1; m_v1.set(m_v3); return; } // e23 if (d23_1 > 0.0f && d23_2 > 0.0f && d123_1 <= 0.0f) { float inv_d23 = 1.0f / (d23_1 + d23_2); m_v2.a = d23_1 * inv_d23; m_v3.a = d23_2 * inv_d23; m_count = 2; m_v1.set(m_v3); return; } // Must be in triangle123 float inv_d123 = 1.0f / (d123_1 + d123_2 + d123_3); m_v1.a = d123_1 * inv_d123; m_v2.a = d123_2 * inv_d123; m_v3.a = d123_3 * inv_d123; m_count = 3; } } /** * A distance proxy is used by the GJK algorithm. * It encapsulates any shape. * * @author daniel */ public static class DistanceProxy { public final Vec2[] m_vertices; public int m_count; public float m_radius; public DistanceProxy(){ m_vertices = new Vec2[Settings.maxPolygonVertices]; for(int i=0; i bestValue){ bestIndex = i; bestValue = value; } } return bestIndex; } /** * Get the supporting vertex in the given direction. * @param d * @return */ public final Vec2 getSupportVertex(final Vec2 d){ int bestIndex = 0; float bestValue = Vec2.dot(m_vertices[0], d); for( int i=1; i bestValue){ bestIndex = i; bestValue = value; } } return m_vertices[bestIndex]; } /** * Get the vertex count. * @return */ public final int getVertexCount(){ return m_count; } /** * Get a vertex by index. Used by b2Distance. * @param index * @return */ public final Vec2 getVertex(int index){ assert(0 <= index && index < m_count); return m_vertices[index]; } } private Simplex simplex = new Simplex(); private int[] saveA = new int[3]; private int[] saveB = new int[3]; private Vec2 closestPoint = new Vec2(); private Vec2 d = new Vec2(); private Vec2 temp = new Vec2(); private Vec2 normal = new Vec2(); /** * Compute the closest points between two shapes. Supports any combination of: * CircleShape and PolygonShape. The simplex cache is input/output. * On the first call set SimplexCache.count to zero. * * @param output * @param cache * @param input */ public final void distance(final DistanceOutput output, final SimplexCache cache, final DistanceInput input) { GJK_CALLS++; final DistanceProxy proxyA = input.proxyA; final DistanceProxy proxyB = input.proxyB; Transform transformA = input.transformA; Transform transformB = input.transformB; // Initialize the simplex. simplex.readCache(cache, proxyA, transformA, proxyB, transformB); // Get simplex vertices as an array. SimplexVertex[] vertices = simplex.vertices; // These store the vertices of the last simplex so that we // can check for duplicates and prevent cycling. // (pooled above) int saveCount = 0; simplex.getClosestPoint(closestPoint); float distanceSqr1 = closestPoint.lengthSquared(); float distanceSqr2 = distanceSqr1; // Main iteration loop int iter = 0; while (iter < GJK_MAX_ITERS) { // Copy simplex so we can identify duplicates. saveCount = simplex.m_count; for (int i = 0; i < saveCount; i++) { saveA[i] = vertices[i].indexA; saveB[i] = vertices[i].indexB; } switch (simplex.m_count) { case 1 : break; case 2 : simplex.solve2(); break; case 3 : simplex.solve3(); break; default : assert (false); } // If we have 3 points, then the origin is in the corresponding triangle. if (simplex.m_count == 3) { break; } // Compute closest point. simplex.getClosestPoint(closestPoint); distanceSqr2 = closestPoint.lengthSquared(); // ensure progress if (distanceSqr2 >= distanceSqr1) { // break; } distanceSqr1 = distanceSqr2; // get search direction; simplex.getSearchDirection(d); // Ensure the search direction is numerically fit. if (d.lengthSquared() < Settings.EPSILON * Settings.EPSILON) { // The origin is probably contained by a line segment // or triangle. Thus the shapes are overlapped. // We can't return zero here even though there may be overlap. // In case the simplex is a point, segment, or triangle it is difficult // to determine if the origin is contained in the CSO or very close to it. break; } /* * b2SimplexVertex* vertex = vertices + simplex.m_count; * vertex.indexA = proxyA.GetSupport(b2MulT(transformA.R, -d)); * vertex.wA = b2Mul(transformA, proxyA.GetVertex(vertex.indexA)); * b2Vec2 wBLocal; * vertex.indexB = proxyB.GetSupport(b2MulT(transformB.R, d)); * vertex.wB = b2Mul(transformB, proxyB.GetVertex(vertex.indexB)); * vertex.w = vertex.wB - vertex.wA; */ // Compute a tentative new simplex vertex using support points. SimplexVertex vertex = vertices[simplex.m_count]; Mat22.mulTransToOut(transformA.R, d.negateLocal(), temp); vertex.indexA = proxyA.getSupport(temp); Transform.mulToOut(transformA, proxyA.getVertex(vertex.indexA), vertex.wA); // Vec2 wBLocal; Mat22.mulTransToOut(transformB.R, d.negateLocal(), temp); vertex.indexB = proxyB.getSupport(temp); Transform.mulToOut(transformB, proxyB.getVertex(vertex.indexB), vertex.wB); vertex.w.set(vertex.wB).subLocal(vertex.wA); // Iteration count is equated to the number of support point calls. ++iter; ++GJK_ITERS; // Check for duplicate support points. This is the main termination criteria. boolean duplicate = false; for (int i = 0; i < saveCount; ++i) { if (vertex.indexA == saveA[i] && vertex.indexB == saveB[i]) { duplicate = true; break; } } // If we found a duplicate support point we must exit to avoid cycling. if (duplicate) { break; } // New vertex is ok and needed. ++simplex.m_count; } GJK_MAX_ITERS = MathUtils.max(GJK_MAX_ITERS, iter); // Prepare output. simplex.getWitnessPoints(output.pointA, output.pointB); output.distance = MathUtils.distance(output.pointA, output.pointB); output.iterations = iter; // Cache the simplex. simplex.writeCache(cache); // Apply radii if requested. if (input.useRadii) { float rA = proxyA.m_radius; float rB = proxyB.m_radius; if (output.distance > rA + rB && output.distance > Settings.EPSILON) { // Shapes are still no overlapped. // Move the witness points to the outer surface. output.distance -= rA + rB; normal.set(output.pointB).subLocal(output.pointA); normal.normalize(); temp.set(normal).mulLocal(rA); output.pointA.addLocal(temp); temp.set(normal).mulLocal(rB); output.pointB.subLocal(temp); } else { // Shapes are overlapped when radii are considered. // Move the witness points to the middle. // b2Vec2 p = 0.5f * (output.pointA + output.pointB); output.pointA.addLocal(output.pointB).mulLocal(.5f); output.pointB.set(output.pointA); output.distance = 0.0f; } } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy