org.bouncycastle.crypto.signers.DSASigner Maven / Gradle / Ivy
package org.bouncycastle.crypto.signers;
import java.math.BigInteger;
import java.security.SecureRandom;
import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.CryptoServicesRegistrar;
import org.bouncycastle.crypto.DSAExt;
import org.bouncycastle.crypto.params.DSAKeyParameters;
import org.bouncycastle.crypto.params.DSAParameters;
import org.bouncycastle.crypto.params.DSAPrivateKeyParameters;
import org.bouncycastle.crypto.params.DSAPublicKeyParameters;
import org.bouncycastle.crypto.params.ParametersWithRandom;
import org.bouncycastle.util.BigIntegers;
/**
* The Digital Signature Algorithm - as described in "Handbook of Applied
* Cryptography", pages 452 - 453.
*/
public class DSASigner
implements DSAExt
{
private final DSAKCalculator kCalculator;
private DSAKeyParameters key;
private SecureRandom random;
/**
* Default configuration, random K values.
*/
public DSASigner()
{
this.kCalculator = new RandomDSAKCalculator();
}
/**
* Configuration with an alternate, possibly deterministic calculator of K.
*
* @param kCalculator a K value calculator.
*/
public DSASigner(DSAKCalculator kCalculator)
{
this.kCalculator = kCalculator;
}
public void init(
boolean forSigning,
CipherParameters param)
{
SecureRandom providedRandom = null;
if (forSigning)
{
if (param instanceof ParametersWithRandom)
{
ParametersWithRandom rParam = (ParametersWithRandom)param;
this.key = (DSAPrivateKeyParameters)rParam.getParameters();
providedRandom = rParam.getRandom();
}
else
{
this.key = (DSAPrivateKeyParameters)param;
}
}
else
{
this.key = (DSAPublicKeyParameters)param;
}
this.random = initSecureRandom(forSigning && !kCalculator.isDeterministic(), providedRandom);
}
public BigInteger getOrder()
{
return key.getParameters().getQ();
}
/**
* generate a signature for the given message using the key we were
* initialised with. For conventional DSA the message should be a SHA-1
* hash of the message of interest.
*
* @param message the message that will be verified later.
*/
public BigInteger[] generateSignature(
byte[] message)
{
DSAParameters params = key.getParameters();
BigInteger q = params.getQ();
BigInteger m = calculateE(q, message);
BigInteger x = ((DSAPrivateKeyParameters)key).getX();
if (kCalculator.isDeterministic())
{
kCalculator.init(q, x, message);
}
else
{
kCalculator.init(q, random);
}
BigInteger k = kCalculator.nextK();
// the randomizer is to conceal timing information related to k and x.
BigInteger r = params.getG().modPow(k.add(getRandomizer(q, random)), params.getP()).mod(q);
k = BigIntegers.modOddInverse(q, k).multiply(m.add(x.multiply(r)));
BigInteger s = k.mod(q);
return new BigInteger[]{ r, s };
}
/**
* return true if the value r and s represent a DSA signature for
* the passed in message for standard DSA the message should be a
* SHA-1 hash of the real message to be verified.
*/
public boolean verifySignature(
byte[] message,
BigInteger r,
BigInteger s)
{
DSAParameters params = key.getParameters();
BigInteger q = params.getQ();
BigInteger m = calculateE(q, message);
BigInteger zero = BigInteger.valueOf(0);
if (zero.compareTo(r) >= 0 || q.compareTo(r) <= 0)
{
return false;
}
if (zero.compareTo(s) >= 0 || q.compareTo(s) <= 0)
{
return false;
}
BigInteger w = BigIntegers.modOddInverseVar(q, s);
BigInteger u1 = m.multiply(w).mod(q);
BigInteger u2 = r.multiply(w).mod(q);
BigInteger p = params.getP();
u1 = params.getG().modPow(u1, p);
u2 = ((DSAPublicKeyParameters)key).getY().modPow(u2, p);
BigInteger v = u1.multiply(u2).mod(p).mod(q);
return v.equals(r);
}
private BigInteger calculateE(BigInteger n, byte[] message)
{
if (n.bitLength() >= message.length * 8)
{
return new BigInteger(1, message);
}
else
{
byte[] trunc = new byte[n.bitLength() / 8];
System.arraycopy(message, 0, trunc, 0, trunc.length);
return new BigInteger(1, trunc);
}
}
protected SecureRandom initSecureRandom(boolean needed, SecureRandom provided)
{
return needed ? CryptoServicesRegistrar.getSecureRandom(provided) : null;
}
private BigInteger getRandomizer(BigInteger q, SecureRandom provided)
{
// Calculate a random multiple of q to add to k. Note that g^q = 1 (mod p), so adding multiple of q to k does not change r.
int randomBits = 7;
return BigIntegers.createRandomBigInteger(randomBits, CryptoServicesRegistrar.getSecureRandom(provided)).add(BigInteger.valueOf(128)).multiply(q);
}
}