All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.intel.analytics.zoo.serving.baseline.PreprocessingBaseline.scala Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2018 Analytics Zoo Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.intel.analytics.zoo.serving.baseline

import java.util.Base64

import com.intel.analytics.bigdl.nn.abstractnn.Activity
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.utils.T
import com.intel.analytics.zoo.serving.PreProcessing
import com.intel.analytics.zoo.serving.arrow.{ArrowDeserializer, ArrowSerializer}
import com.intel.analytics.zoo.serving.engine.{ClusterServingInference, ModelHolder, Timer}
import com.intel.analytics.zoo.serving.utils.{ClusterServingHelper, SerParams, Supportive}
import scopt.OptionParser

object PreprocessingBaseline extends Supportive {
  case class Params(testNum: Int = 1000,
                    parNum: Int = 1,
                    inputShape: String = "3, 224, 224",
                    coreNum: Int = 4)
  val parser = new OptionParser[Params]("Text Classification Example") {
    opt[Int]('n', "testNum")
      .text("Number of test input")
      .action((x, params) => params.copy(testNum = x))
    opt[Int]('p', "parallelism")
      .text("Parallelism number, align to Flink -p")
      .action((x, params) => params.copy(parNum = x))
    opt[String]('s', "inputShape")
      .text("Input Shape, split by coma")
      .action((x, params) => params.copy(inputShape = x))
    opt[Int]( "coreNum")
      .text("core number")
      .action((x, params) => params.copy(coreNum = x))
  }
  def parseShape(shape: String): Array[Array[Int]] = {
    val shapeListStr = shape.
      split("""\[\[|\]\]|\],\s*\[""").filter(x => x != "")
    var shapeList = new Array[Array[Int]](shapeListStr.length)
    (0 until shapeListStr.length).foreach(idx => {
      val arr = shapeListStr(idx).stripPrefix("[").stripSuffix("]").split(",")
      val thisShape = new Array[Int](arr.length)
      (0 until arr.length).foreach(i => {
        thisShape(i) = arr(i).trim.toInt
      })
      shapeList(idx) = thisShape
    })
    shapeList
  }
  def makeTensorFromShape(shapeStr: String): Activity = {
    val shapeArr = parseShape(shape = shapeStr)
    if (shapeArr.length == 1) {
      Tensor[Float](shapeArr(0)).rand()
    }
    else {
      throw new Error("multiple dim not supported yet")
    }
  }
  def getBase64StringOfTensor(activity: Activity): String = {
    val byteArr = ArrowSerializer.activityBatchToByte(activity, 1)
    Base64.getEncoder.encodeToString(byteArr)
  }
  def main(args: Array[String]): Unit = {
    val param = parser.parse(args, Params()).head
//    val helper = new ClusterServingHelper()
//    helper.initArgs()
//    val sParam = new SerParams(helper)

    val warmT = makeTensorFromShape(param.inputShape)
    val b64string = getBase64StringOfTensor(warmT)
    println(s"Previewing base64 string, prefix is ${b64string.substring(0, 20)}")
    timing(s"Baseline for parallel pipeline ${param.parNum} " +
      s"with input ${param.testNum.toString}") {

      (0 until param.parNum).indices.toParArray.foreach(_ => {
        val timer = new Timer()
        var a = Seq[(String, String)]()
        val pre = new PreProcessing(true)
        (0 until param.coreNum).foreach( i =>
          a = a :+ (i.toString(), b64string)
        )
        (0 until param.testNum).grouped(param.coreNum).flatMap(i => {
          val preprocessed = timer.timing(
            s"Thread ${Thread.currentThread().getId} Preprocess", param.coreNum) {
            a.map(item => {
              ModelHolder.synchronized{
                while (ModelHolder.modelQueueing != 0) {
                  ModelHolder.wait()
                }
                ModelHolder.nonOMP += 1
              }
              val tensor = timer.timing(
                s"Thread ${Thread.currentThread().getId} Preprocess one record", param.coreNum) {
                val deserializer = new ArrowDeserializer()
                val arr = deserializer.create(b64string)
                Tensor(arr(0)._1, arr(0)._2)
              }
              ModelHolder.synchronized {
                ModelHolder.modelQueueing += 1
              }
              Thread.sleep(50)
              ModelHolder.synchronized {
                ModelHolder.modelQueueing -= 1
              }
              ModelHolder.synchronized{
                ModelHolder.nonOMP -= 1
                ModelHolder.notifyAll()
              }
              (item._1, T(tensor))

            })
          }
          Seq(preprocessed)
        }).toArray
        timer.print()
      })

    }




  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy