All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.ssc.util.Formattera.txt Maven / Gradle / Ivy

Go to download

This is a JSR331 interface for SSC (Software for the Calculation of the Simplex) is a java library for solving linear programming problems v. 3.0.1. SSC was designed and developed by Stefano Scarioli.

The newest version!
package it.ssc.util;

import java.io.BufferedWriter; 
import java.io.Closeable;
import java.io.IOException;
import java.io.File;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;
import java.io.Flushable;
import java.io.OutputStream;
import java.io.OutputStreamWriter;
import java.io.PrintStream;
import java.io.UnsupportedEncodingException;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.MathContext;
import java.math.RoundingMode;
import java.nio.charset.Charset;
import java.nio.charset.IllegalCharsetNameException;
import java.nio.charset.UnsupportedCharsetException;
import java.text.DateFormatSymbols;
import java.text.DecimalFormat;
import java.text.DecimalFormatSymbols;
import java.text.NumberFormat;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import java.util.*;
import java.time.DateTimeException;
import java.time.Instant;
import java.time.ZoneId;
import java.time.ZoneOffset;
import java.time.temporal.ChronoField;
import java.time.temporal.TemporalAccessor;
import java.time.temporal.TemporalQueries;

import sun.misc.DoubleConsts;
import sun.misc.FormattedFloatingDecimal;

/**
 * An interpreter for printf-style format strings.  This class provides support
 * for layout justification and alignment, common formats for numeric, string,
 * and date/time data, and locale-specific output.  Common Java types such as
 * {@code byte}, {@link java.math.BigDecimal BigDecimal}, and {@link Calendar}
 * are supported.  Limited formatting customization for arbitrary user types is
 * provided through the {@link Formattable} interface.
 *
 * 

Formatters are not necessarily safe for multithreaded access. Thread * safety is optional and is the responsibility of users of methods in this * class. * *

Formatted printing for the Java language is heavily inspired by C's * {@code printf}. Although the format strings are similar to C, some * customizations have been made to accommodate the Java language and exploit * some of its features. Also, Java formatting is more strict than C's; for * example, if a conversion is incompatible with a flag, an exception will be * thrown. In C inapplicable flags are silently ignored. The format strings * are thus intended to be recognizable to C programmers but not necessarily * completely compatible with those in C. * *

Examples of expected usage: * *

 *   StringBuilder sb = new StringBuilder();
 *   // Send all output to the Appendable object sb
 *   Formatter formatter = new Formatter(sb, Locale.US);
 *
 *   // Explicit argument indices may be used to re-order output.
 *   formatter.format("%4$2s %3$2s %2$2s %1$2s", "a", "b", "c", "d")
 *   // -> " d  c  b  a"
 *
 *   // Optional locale as the first argument can be used to get
 *   // locale-specific formatting of numbers.  The precision and width can be
 *   // given to round and align the value.
 *   formatter.format(Locale.FRANCE, "e = %+10.4f", Math.E);
 *   // -> "e =    +2,7183"
 *
 *   // The '(' numeric flag may be used to format negative numbers with
 *   // parentheses rather than a minus sign.  Group separators are
 *   // automatically inserted.
 *   formatter.format("Amount gained or lost since last statement: $ %(,.2f",
 *                    balanceDelta);
 *   // -> "Amount gained or lost since last statement: $ (6,217.58)"
 * 
* *

Convenience methods for common formatting requests exist as illustrated * by the following invocations: * *

 *   // Writes a formatted string to System.out.
 *   System.out.format("Local time: %tT", Calendar.getInstance());
 *   // -> "Local time: 13:34:18"
 *
 *   // Writes formatted output to System.err.
 *   System.err.printf("Unable to open file '%1$s': %2$s",
 *                     fileName, exception.getMessage());
 *   // -> "Unable to open file 'food': No such file or directory"
 * 
* *

Like C's {@code sprintf(3)}, Strings may be formatted using the static * method {@link String#format(String,Object...) String.format}: * *

 *   // Format a string containing a date.
 *   import java.util.Calendar;
 *   import java.util.GregorianCalendar;
 *   import static java.util.Calendar.*;
 *
 *   Calendar c = new GregorianCalendar(1995, MAY, 23);
 *   String s = String.format("Duke's Birthday: %1$tb %1$te, %1$tY", c);
 *   // -> s == "Duke's Birthday: May 23, 1995"
 * 
* *

Organization

* *

This specification is divided into two sections. The first section, Summary, covers the basic formatting concepts. This * section is intended for users who want to get started quickly and are * familiar with formatted printing in other programming languages. The second * section, Details, covers the specific implementation * details. It is intended for users who want more precise specification of * formatting behavior. * *

Summary

* *

This section is intended to provide a brief overview of formatting * concepts. For precise behavioral details, refer to the Details section. * *

Format String Syntax

* *

Every method which produces formatted output requires a format * string and an argument list. The format string is a {@link * String} which may contain fixed text and one or more embedded format * specifiers. Consider the following example: * *

 *   Calendar c = ...;
 *   String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
 * 
* * This format string is the first argument to the {@code format} method. It * contains three format specifiers "{@code %1$tm}", "{@code %1$te}", and * "{@code %1$tY}" which indicate how the arguments should be processed and * where they should be inserted in the text. The remaining portions of the * format string are fixed text including {@code "Dukes Birthday: "} and any * other spaces or punctuation. * * The argument list consists of all arguments passed to the method after the * format string. In the above example, the argument list is of size one and * consists of the {@link java.util.Calendar Calendar} object {@code c}. * *
    * *
  • The format specifiers for general, character, and numeric types have * the following syntax: * *
     *   %[argument_index$][flags][width][.precision]conversion
     * 
    * *

    The optional argument_index is a decimal integer indicating the * position of the argument in the argument list. The first argument is * referenced by "{@code 1$}", the second by "{@code 2$}", etc. * *

    The optional flags is a set of characters that modify the output * format. The set of valid flags depends on the conversion. * *

    The optional width is a positive decimal integer indicating * the minimum number of characters to be written to the output. * *

    The optional precision is a non-negative decimal integer usually * used to restrict the number of characters. The specific behavior depends on * the conversion. * *

    The required conversion is a character indicating how the * argument should be formatted. The set of valid conversions for a given * argument depends on the argument's data type. * *

  • The format specifiers for types which are used to represents dates and * times have the following syntax: * *
     *   %[argument_index$][flags][width]conversion
     * 
    * *

    The optional argument_index, flags and width are * defined as above. * *

    The required conversion is a two character sequence. The first * character is {@code 't'} or {@code 'T'}. The second character indicates * the format to be used. These characters are similar to but not completely * identical to those defined by GNU {@code date} and POSIX * {@code strftime(3c)}. * *

  • The format specifiers which do not correspond to arguments have the * following syntax: * *
     *   %[flags][width]conversion
     * 
    * *

    The optional flags and width is defined as above. * *

    The required conversion is a character indicating content to be * inserted in the output. * *

* *

Conversions

* *

Conversions are divided into the following categories: * *

    * *
  1. General - may be applied to any argument * type * *
  2. Character - may be applied to basic types which represent * Unicode characters: {@code char}, {@link Character}, {@code byte}, {@link * Byte}, {@code short}, and {@link Short}. This conversion may also be * applied to the types {@code int} and {@link Integer} when {@link * Character#isValidCodePoint} returns {@code true} * *
  3. Numeric * *
      * *
    1. Integral - may be applied to Java integral types: {@code byte}, * {@link Byte}, {@code short}, {@link Short}, {@code int} and {@link * Integer}, {@code long}, {@link Long}, and {@link java.math.BigInteger * BigInteger} (but not {@code char} or {@link Character}) * *
    2. Floating Point - may be applied to Java floating-point types: * {@code float}, {@link Float}, {@code double}, {@link Double}, and {@link * java.math.BigDecimal BigDecimal} * *
    * *
  4. Date/Time - may be applied to Java types which are capable of * encoding a date or time: {@code long}, {@link Long}, {@link Calendar}, * {@link Date} and {@link TemporalAccessor TemporalAccessor} * *
  5. Percent - produces a literal {@code '%'} * ('\u0025') * *
  6. Line Separator - produces the platform-specific line separator * *
* *

The following table summarizes the supported conversions. Conversions * denoted by an upper-case character (i.e. {@code 'B'}, {@code 'H'}, * {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'}, {@code 'G'}, * {@code 'A'}, and {@code 'T'}) are the same as those for the corresponding * lower-case conversion characters except that the result is converted to * upper case according to the rules of the prevailing {@link java.util.Locale * Locale}. The result is equivalent to the following invocation of {@link * String#toUpperCase()} * *

 *    out.toUpperCase() 
* * * *
Conversion * Argument Category * Description * *
{@code 'b'}, {@code 'B'} * general * If the argument arg is {@code null}, then the result is * "{@code false}". If arg is a {@code boolean} or {@link * Boolean}, then the result is the string returned by {@link * String#valueOf(boolean) String.valueOf(arg)}. Otherwise, the result is * "true". * *
{@code 'h'}, {@code 'H'} * general * If the argument arg is {@code null}, then the result is * "{@code null}". Otherwise, the result is obtained by invoking * {@code Integer.toHexString(arg.hashCode())}. * *
{@code 's'}, {@code 'S'} * general * If the argument arg is {@code null}, then the result is * "{@code null}". If arg implements {@link Formattable}, then * {@link Formattable#formatTo arg.formatTo} is invoked. Otherwise, the * result is obtained by invoking {@code arg.toString()}. * *
{@code 'c'}, {@code 'C'} * character * The result is a Unicode character * *
{@code 'd'} * integral * The result is formatted as a decimal integer * *
{@code 'o'} * integral * The result is formatted as an octal integer * *
{@code 'x'}, {@code 'X'} * integral * The result is formatted as a hexadecimal integer * *
{@code 'e'}, {@code 'E'} * floating point * The result is formatted as a decimal number in computerized * scientific notation * *
{@code 'f'} * floating point * The result is formatted as a decimal number * *
{@code 'g'}, {@code 'G'} * floating point * The result is formatted using computerized scientific notation or * decimal format, depending on the precision and the value after rounding. * *
{@code 'a'}, {@code 'A'} * floating point * The result is formatted as a hexadecimal floating-point number with * a significand and an exponent. This conversion is not supported * for the {@code BigDecimal} type despite the latter's being in the * floating point argument category. * *
{@code 't'}, {@code 'T'} * date/time * Prefix for date and time conversion characters. See Date/Time Conversions. * *
{@code '%'} * percent * The result is a literal {@code '%'} ('\u0025') * *
{@code 'n'} * line separator * The result is the platform-specific line separator * *
* *

Any characters not explicitly defined as conversions are illegal and are * reserved for future extensions. * *

Date/Time Conversions

* *

The following date and time conversion suffix characters are defined for * the {@code 't'} and {@code 'T'} conversions. The types are similar to but * not completely identical to those defined by GNU {@code date} and POSIX * {@code strftime(3c)}. Additional conversion types are provided to access * Java-specific functionality (e.g. {@code 'L'} for milliseconds within the * second). * *

The following conversion characters are used for formatting times: * *

* *
{@code 'H'} * Hour of the day for the 24-hour clock, formatted as two digits with * a leading zero as necessary i.e. {@code 00 - 23}. * *
{@code 'I'} * Hour for the 12-hour clock, formatted as two digits with a leading * zero as necessary, i.e. {@code 01 - 12}. * *
{@code 'k'} * Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}. * *
{@code 'l'} * Hour for the 12-hour clock, i.e. {@code 1 - 12}. * *
{@code 'M'} * Minute within the hour formatted as two digits with a leading zero * as necessary, i.e. {@code 00 - 59}. * *
{@code 'S'} * Seconds within the minute, formatted as two digits with a leading * zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special * value required to support leap seconds). * *
{@code 'L'} * Millisecond within the second formatted as three digits with * leading zeros as necessary, i.e. {@code 000 - 999}. * *
{@code 'N'} * Nanosecond within the second, formatted as nine digits with leading * zeros as necessary, i.e. {@code 000000000 - 999999999}. * *
{@code 'p'} * Locale-specific {@linkplain * java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker * in lower case, e.g."{@code am}" or "{@code pm}". Use of the conversion * prefix {@code 'T'} forces this output to upper case. * *
{@code 'z'} * RFC 822 * style numeric time zone offset from GMT, e.g. {@code -0800}. This * value will be adjusted as necessary for Daylight Saving Time. For * {@code long}, {@link Long}, and {@link Date} the time zone used is * the {@linkplain TimeZone#getDefault() default time zone} for this * instance of the Java virtual machine. * *
{@code 'Z'} * A string representing the abbreviation for the time zone. This * value will be adjusted as necessary for Daylight Saving Time. For * {@code long}, {@link Long}, and {@link Date} the time zone used is * the {@linkplain TimeZone#getDefault() default time zone} for this * instance of the Java virtual machine. The Formatter's locale will * supersede the locale of the argument (if any). * *
{@code 's'} * Seconds since the beginning of the epoch starting at 1 January 1970 * {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to * {@code Long.MAX_VALUE/1000}. * *
{@code 'Q'} * Milliseconds since the beginning of the epoch starting at 1 January * 1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to * {@code Long.MAX_VALUE}. * *
* *

The following conversion characters are used for formatting dates: * *

* *
{@code 'B'} * Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths * full month name}, e.g. {@code "January"}, {@code "February"}. * *
{@code 'b'} * Locale-specific {@linkplain * java.text.DateFormatSymbols#getShortMonths abbreviated month name}, * e.g. {@code "Jan"}, {@code "Feb"}. * *
{@code 'h'} * Same as {@code 'b'}. * *
{@code 'A'} * Locale-specific full name of the {@linkplain * java.text.DateFormatSymbols#getWeekdays day of the week}, * e.g. {@code "Sunday"}, {@code "Monday"} * *
{@code 'a'} * Locale-specific short name of the {@linkplain * java.text.DateFormatSymbols#getShortWeekdays day of the week}, * e.g. {@code "Sun"}, {@code "Mon"} * *
{@code 'C'} * Four-digit year divided by {@code 100}, formatted as two digits * with leading zero as necessary, i.e. {@code 00 - 99} * *
{@code 'Y'} * Year, formatted as at least four digits with leading zeros as * necessary, e.g. {@code 0092} equals {@code 92} CE for the Gregorian * calendar. * *
{@code 'y'} * Last two digits of the year, formatted with leading zeros as * necessary, i.e. {@code 00 - 99}. * *
{@code 'j'} * Day of year, formatted as three digits with leading zeros as * necessary, e.g. {@code 001 - 366} for the Gregorian calendar. * *
{@code 'm'} * Month, formatted as two digits with leading zeros as necessary, * i.e. {@code 01 - 13}. * *
{@code 'd'} * Day of month, formatted as two digits with leading zeros as * necessary, i.e. {@code 01 - 31} * *
{@code 'e'} * Day of month, formatted as two digits, i.e. {@code 1 - 31}. * *
* *

The following conversion characters are used for formatting common * date/time compositions. * *

* *
{@code 'R'} * Time formatted for the 24-hour clock as {@code "%tH:%tM"} * *
{@code 'T'} * Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}. * *
{@code 'r'} * Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS %Tp"}. * The location of the morning or afternoon marker ({@code '%Tp'}) may be * locale-dependent. * *
{@code 'D'} * Date formatted as {@code "%tm/%td/%ty"}. * *
{@code 'F'} * ISO 8601 * complete date formatted as {@code "%tY-%tm-%td"}. * *
{@code 'c'} * Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"}, * e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}. * *
* *

Any characters not explicitly defined as date/time conversion suffixes * are illegal and are reserved for future extensions. * *

Flags

* *

The following table summarizes the supported flags. y means the * flag is supported for the indicated argument types. * *

* *
Flag General * Character Integral * Floating Point * Date/Time * Description * *
'-' y * y * y * y * y * The result will be left-justified. * *
'#' y1 * - * y3 * y * - * The result should use a conversion-dependent alternate form * *
'+' - * - * y4 * y * - * The result will always include a sign * *
'  ' - * - * y4 * y * - * The result will include a leading space for positive values * *
'0' - * - * y * y * - * The result will be zero-padded * *
',' - * - * y2 * y5 * - * The result will include locale-specific {@linkplain * java.text.DecimalFormatSymbols#getGroupingSeparator grouping separators} * *
'(' - * - * y4 * y5 * - * The result will enclose negative numbers in parentheses * *
* *

1 Depends on the definition of {@link Formattable}. * *

2 For {@code 'd'} conversion only. * *

3 For {@code 'o'}, {@code 'x'}, and {@code 'X'} * conversions only. * *

4 For {@code 'd'}, {@code 'o'}, {@code 'x'}, and * {@code 'X'} conversions applied to {@link java.math.BigInteger BigInteger} * or {@code 'd'} applied to {@code byte}, {@link Byte}, {@code short}, {@link * Short}, {@code int} and {@link Integer}, {@code long}, and {@link Long}. * *

5 For {@code 'e'}, {@code 'E'}, {@code 'f'}, * {@code 'g'}, and {@code 'G'} conversions only. * *

Any characters not explicitly defined as flags are illegal and are * reserved for future extensions. * *

Width

* *

The width is the minimum number of characters to be written to the * output. For the line separator conversion, width is not applicable; if it * is provided, an exception will be thrown. * *

Precision

* *

For general argument types, the precision is the maximum number of * characters to be written to the output. * *

For the floating-point conversions {@code 'a'}, {@code 'A'}, {@code 'e'}, * {@code 'E'}, and {@code 'f'} the precision is the number of digits after the * radix point. If the conversion is {@code 'g'} or {@code 'G'}, then the * precision is the total number of digits in the resulting magnitude after * rounding. * *

For character, integral, and date/time argument types and the percent * and line separator conversions, the precision is not applicable; if a * precision is provided, an exception will be thrown. * *

Argument Index

* *

The argument index is a decimal integer indicating the position of the * argument in the argument list. The first argument is referenced by * "{@code 1$}", the second by "{@code 2$}", etc. * *

Another way to reference arguments by position is to use the * {@code '<'} ('\u003c') flag, which causes the argument for * the previous format specifier to be re-used. For example, the following two * statements would produce identical strings: * *

 *   Calendar c = ...;
 *   String s1 = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
 *
 *   String s2 = String.format("Duke's Birthday: %1$tm %<te,%<tY", c);
 * 
* *
*

Details

* *

This section is intended to provide behavioral details for formatting, * including conditions and exceptions, supported data types, localization, and * interactions between flags, conversions, and data types. For an overview of * formatting concepts, refer to the Summary * *

Any characters not explicitly defined as conversions, date/time * conversion suffixes, or flags are illegal and are reserved for * future extensions. Use of such a character in a format string will * cause an {@link UnknownFormatConversionException} or {@link * UnknownFormatFlagsException} to be thrown. * *

If the format specifier contains a width or precision with an invalid * value or which is otherwise unsupported, then a {@link * IllegalFormatWidthException} or {@link IllegalFormatPrecisionException} * respectively will be thrown. * *

If a format specifier contains a conversion character that is not * applicable to the corresponding argument, then an {@link * IllegalFormatConversionException} will be thrown. * *

All specified exceptions may be thrown by any of the {@code format} * methods of {@code Formatter} as well as by any {@code format} convenience * methods such as {@link String#format(String,Object...) String.format} and * {@link java.io.PrintStream#printf(String,Object...) PrintStream.printf}. * *

Conversions denoted by an upper-case character (i.e. {@code 'B'}, * {@code 'H'}, {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'}, * {@code 'G'}, {@code 'A'}, and {@code 'T'}) are the same as those for the * corresponding lower-case conversion characters except that the result is * converted to upper case according to the rules of the prevailing {@link * java.util.Locale Locale}. The result is equivalent to the following * invocation of {@link String#toUpperCase()} * *

 *    out.toUpperCase() 
* *

General

* *

The following general conversions may be applied to any argument type: * *

* *
{@code 'b'} * '\u0062' * Produces either "{@code true}" or "{@code false}" as returned by * {@link Boolean#toString(boolean)}. * *

If the argument is {@code null}, then the result is * "{@code false}". If the argument is a {@code boolean} or {@link * Boolean}, then the result is the string returned by {@link * String#valueOf(boolean) String.valueOf()}. Otherwise, the result is * "{@code true}". * *

If the {@code '#'} flag is given, then a {@link * FormatFlagsConversionMismatchException} will be thrown. * *

{@code 'B'} * '\u0042' * The upper-case variant of {@code 'b'}. * *
{@code 'h'} * '\u0068' * Produces a string representing the hash code value of the object. * *

If the argument, arg is {@code null}, then the * result is "{@code null}". Otherwise, the result is obtained * by invoking {@code Integer.toHexString(arg.hashCode())}. * *

If the {@code '#'} flag is given, then a {@link * FormatFlagsConversionMismatchException} will be thrown. * *

{@code 'H'} * '\u0048' * The upper-case variant of {@code 'h'}. * *
{@code 's'} * '\u0073' * Produces a string. * *

If the argument is {@code null}, then the result is * "{@code null}". If the argument implements {@link Formattable}, then * its {@link Formattable#formatTo formatTo} method is invoked. * Otherwise, the result is obtained by invoking the argument's * {@code toString()} method. * *

If the {@code '#'} flag is given and the argument is not a {@link * Formattable} , then a {@link FormatFlagsConversionMismatchException} * will be thrown. * *

{@code 'S'} * '\u0053' * The upper-case variant of {@code 's'}. * *
* *

The following flags apply to general conversions: * *

* *
{@code '-'} * '\u002d' * Left justifies the output. Spaces ('\u0020') will be * added at the end of the converted value as required to fill the minimum * width of the field. If the width is not provided, then a {@link * MissingFormatWidthException} will be thrown. If this flag is not given * then the output will be right-justified. * *
{@code '#'} * '\u0023' * Requires the output use an alternate form. The definition of the * form is specified by the conversion. * *
* *

The width is the minimum number of characters to * be written to the * output. If the length of the converted value is less than the width then * the output will be padded by '  ' ('\u0020') * until the total number of characters equals the width. The padding is on * the left by default. If the {@code '-'} flag is given, then the padding * will be on the right. If the width is not specified then there is no * minimum. * *

The precision is the maximum number of characters to be written to the * output. The precision is applied before the width, thus the output will be * truncated to {@code precision} characters even if the width is greater than * the precision. If the precision is not specified then there is no explicit * limit on the number of characters. * *

Character

* * This conversion may be applied to {@code char} and {@link Character}. It * may also be applied to the types {@code byte}, {@link Byte}, * {@code short}, and {@link Short}, {@code int} and {@link Integer} when * {@link Character#isValidCodePoint} returns {@code true}. If it returns * {@code false} then an {@link IllegalFormatCodePointException} will be * thrown. * * * *
{@code 'c'} * '\u0063' * Formats the argument as a Unicode character as described in Unicode Character * Representation. This may be more than one 16-bit {@code char} in * the case where the argument represents a supplementary character. * *

If the {@code '#'} flag is given, then a {@link * FormatFlagsConversionMismatchException} will be thrown. * *

{@code 'C'} * '\u0043' * The upper-case variant of {@code 'c'}. * *
* *

The {@code '-'} flag defined for General * conversions applies. If the {@code '#'} flag is given, then a {@link * FormatFlagsConversionMismatchException} will be thrown. * *

The width is defined as for General conversions. * *

The precision is not applicable. If the precision is specified then an * {@link IllegalFormatPrecisionException} will be thrown. * *

Numeric

* *

Numeric conversions are divided into the following categories: * *

    * *
  1. Byte, Short, Integer, and Long * *
  2. BigInteger * *
  3. Float and Double * *
  4. BigDecimal * *
* *

Numeric types will be formatted according to the following algorithm: * *

Number Localization Algorithm * *

After digits are obtained for the integer part, fractional part, and * exponent (as appropriate for the data type), the following transformation * is applied: * *

    * *
  1. Each digit character d in the string is replaced by a * locale-specific digit computed relative to the current locale's * {@linkplain java.text.DecimalFormatSymbols#getZeroDigit() zero digit} * z; that is d -  {@code '0'} *  + z. * *
  2. If a decimal separator is present, a locale-specific {@linkplain * java.text.DecimalFormatSymbols#getDecimalSeparator decimal separator} is * substituted. * *
  3. If the {@code ','} ('\u002c') * flag is given, then the locale-specific {@linkplain * java.text.DecimalFormatSymbols#getGroupingSeparator grouping separator} is * inserted by scanning the integer part of the string from least significant * to most significant digits and inserting a separator at intervals defined by * the locale's {@linkplain java.text.DecimalFormat#getGroupingSize() grouping * size}. * *
  4. If the {@code '0'} flag is given, then the locale-specific {@linkplain * java.text.DecimalFormatSymbols#getZeroDigit() zero digits} are inserted * after the sign character, if any, and before the first non-zero digit, until * the length of the string is equal to the requested field width. * *
  5. If the value is negative and the {@code '('} flag is given, then a * {@code '('} ('\u0028') is prepended and a {@code ')'} * ('\u0029') is appended. * *
  6. If the value is negative (or floating-point negative zero) and * {@code '('} flag is not given, then a {@code '-'} ('\u002d') * is prepended. * *
  7. If the {@code '+'} flag is given and the value is positive or zero (or * floating-point positive zero), then a {@code '+'} ('\u002b') * will be prepended. * *
* *

If the value is NaN or positive infinity the literal strings "NaN" or * "Infinity" respectively, will be output. If the value is negative infinity, * then the output will be "(Infinity)" if the {@code '('} flag is given * otherwise the output will be "-Infinity". These values are not localized. * *

Byte, Short, Integer, and Long * *

The following conversions may be applied to {@code byte}, {@link Byte}, * {@code short}, {@link Short}, {@code int} and {@link Integer}, * {@code long}, and {@link Long}. * *

* *
{@code 'd'} * '\u0064' * Formats the argument as a decimal integer. The localization algorithm is applied. * *

If the {@code '0'} flag is given and the value is negative, then * the zero padding will occur after the sign. * *

If the {@code '#'} flag is given then a {@link * FormatFlagsConversionMismatchException} will be thrown. * *

{@code 'o'} * '\u006f' * Formats the argument as an integer in base eight. No localization * is applied. * *

If x is negative then the result will be an unsigned value * generated by adding 2n to the value where {@code n} is the * number of bits in the type as returned by the static {@code SIZE} field * in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short}, * {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long} * classes as appropriate. * *

If the {@code '#'} flag is given then the output will always begin * with the radix indicator {@code '0'}. * *

If the {@code '0'} flag is given then the output will be padded * with leading zeros to the field width following any indication of sign. * *

If {@code '('}, {@code '+'}, '  ', or {@code ','} flags * are given then a {@link FormatFlagsConversionMismatchException} will be * thrown. * *

{@code 'x'} * '\u0078' * Formats the argument as an integer in base sixteen. No * localization is applied. * *

If x is negative then the result will be an unsigned value * generated by adding 2n to the value where {@code n} is the * number of bits in the type as returned by the static {@code SIZE} field * in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short}, * {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long} * classes as appropriate. * *

If the {@code '#'} flag is given then the output will always begin * with the radix indicator {@code "0x"}. * *

If the {@code '0'} flag is given then the output will be padded to * the field width with leading zeros after the radix indicator or sign (if * present). * *

If {@code '('}, '  ', {@code '+'}, or * {@code ','} flags are given then a {@link * FormatFlagsConversionMismatchException} will be thrown. * *

{@code 'X'} * '\u0058' * The upper-case variant of {@code 'x'}. The entire string * representing the number will be converted to {@linkplain * String#toUpperCase upper case} including the {@code 'x'} (if any) and * all hexadecimal digits {@code 'a'} - {@code 'f'} * ('\u0061' - '\u0066'). * *
* *

If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and * both the {@code '#'} and the {@code '0'} flags are given, then result will * contain the radix indicator ({@code '0'} for octal and {@code "0x"} or * {@code "0X"} for hexadecimal), some number of zeros (based on the width), * and the value. * *

If the {@code '-'} flag is not given, then the space padding will occur * before the sign. * *

The following flags apply to numeric integral * conversions: * *

* *
{@code '+'} * '\u002b' * Requires the output to include a positive sign for all positive * numbers. If this flag is not given then only negative values will * include a sign. * *

If both the {@code '+'} and '  ' flags are given * then an {@link IllegalFormatFlagsException} will be thrown. * *

'  ' * '\u0020' * Requires the output to include a single extra space * ('\u0020') for non-negative values. * *

If both the {@code '+'} and '  ' flags are given * then an {@link IllegalFormatFlagsException} will be thrown. * *

{@code '0'} * '\u0030' * Requires the output to be padded with leading {@linkplain * java.text.DecimalFormatSymbols#getZeroDigit zeros} to the minimum field * width following any sign or radix indicator except when converting NaN * or infinity. If the width is not provided, then a {@link * MissingFormatWidthException} will be thrown. * *

If both the {@code '-'} and {@code '0'} flags are given then an * {@link IllegalFormatFlagsException} will be thrown. * *

{@code ','} * '\u002c' * Requires the output to include the locale-specific {@linkplain * java.text.DecimalFormatSymbols#getGroupingSeparator group separators} as * described in the "group" section of the * localization algorithm. * *
{@code '('} * '\u0028' * Requires the output to prepend a {@code '('} * ('\u0028') and append a {@code ')'} * ('\u0029') to negative values. * *
* *

If no flags are given the default formatting is * as follows: * *

    * *
  • The output is right-justified within the {@code width} * *
  • Negative numbers begin with a {@code '-'} ('\u002d') * *
  • Positive numbers and zero do not include a sign or extra leading * space * *
  • No grouping separators are included * *
* *

The width is the minimum number of characters to * be written to the output. This includes any signs, digits, grouping * separators, radix indicator, and parentheses. If the length of the * converted value is less than the width then the output will be padded by * spaces ('\u0020') until the total number of characters equals * width. The padding is on the left by default. If {@code '-'} flag is * given then the padding will be on the right. If width is not specified then * there is no minimum. * *

The precision is not applicable. If precision is specified then an * {@link IllegalFormatPrecisionException} will be thrown. * *

BigInteger * *

The following conversions may be applied to {@link * java.math.BigInteger}. * *

* *
{@code 'd'} * '\u0064' * Requires the output to be formatted as a decimal integer. The localization algorithm is applied. * *

If the {@code '#'} flag is given {@link * FormatFlagsConversionMismatchException} will be thrown. * *

{@code 'o'} * '\u006f' * Requires the output to be formatted as an integer in base eight. * No localization is applied. * *

If x is negative then the result will be a signed value * beginning with {@code '-'} ('\u002d'). Signed output is * allowed for this type because unlike the primitive types it is not * possible to create an unsigned equivalent without assuming an explicit * data-type size. * *

If x is positive or zero and the {@code '+'} flag is given * then the result will begin with {@code '+'} ('\u002b'). * *

If the {@code '#'} flag is given then the output will always begin * with {@code '0'} prefix. * *

If the {@code '0'} flag is given then the output will be padded * with leading zeros to the field width following any indication of sign. * *

If the {@code ','} flag is given then a {@link * FormatFlagsConversionMismatchException} will be thrown. * *

{@code 'x'} * '\u0078' * Requires the output to be formatted as an integer in base * sixteen. No localization is applied. * *

If x is negative then the result will be a signed value * beginning with {@code '-'} ('\u002d'). Signed output is * allowed for this type because unlike the primitive types it is not * possible to create an unsigned equivalent without assuming an explicit * data-type size. * *

If x is positive or zero and the {@code '+'} flag is given * then the result will begin with {@code '+'} ('\u002b'). * *

If the {@code '#'} flag is given then the output will always begin * with the radix indicator {@code "0x"}. * *

If the {@code '0'} flag is given then the output will be padded to * the field width with leading zeros after the radix indicator or sign (if * present). * *

If the {@code ','} flag is given then a {@link * FormatFlagsConversionMismatchException} will be thrown. * *

{@code 'X'} * '\u0058' * The upper-case variant of {@code 'x'}. The entire string * representing the number will be converted to {@linkplain * String#toUpperCase upper case} including the {@code 'x'} (if any) and * all hexadecimal digits {@code 'a'} - {@code 'f'} * ('\u0061' - '\u0066'). * *
* *

If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and * both the {@code '#'} and the {@code '0'} flags are given, then result will * contain the base indicator ({@code '0'} for octal and {@code "0x"} or * {@code "0X"} for hexadecimal), some number of zeros (based on the width), * and the value. * *

If the {@code '0'} flag is given and the value is negative, then the * zero padding will occur after the sign. * *

If the {@code '-'} flag is not given, then the space padding will occur * before the sign. * *

All flags defined for Byte, Short, Integer, and * Long apply. The default behavior when no flags are * given is the same as for Byte, Short, Integer, and Long. * *

The specification of width is the same as * defined for Byte, Short, Integer, and Long. * *

The precision is not applicable. If precision is specified then an * {@link IllegalFormatPrecisionException} will be thrown. * *

Float and Double * *

The following conversions may be applied to {@code float}, {@link * Float}, {@code double} and {@link Double}. * *

* *
{@code 'e'} * '\u0065' * Requires the output to be formatted using computerized scientific notation. The localization algorithm is applied. * *

The formatting of the magnitude m depends upon its value. * *

If m is NaN or infinite, the literal strings "NaN" or * "Infinity", respectively, will be output. These values are not * localized. * *

If m is positive-zero or negative-zero, then the exponent * will be {@code "+00"}. * *

Otherwise, the result is a string that represents the sign and * magnitude (absolute value) of the argument. The formatting of the sign * is described in the localization * algorithm. The formatting of the magnitude m depends upon its * value. * *

Let n be the unique integer such that 10n * <= m < 10n+1; then let a be the * mathematically exact quotient of m and 10n so * that 1 <= a < 10. The magnitude is then represented as the * integer part of a, as a single decimal digit, followed by the * decimal separator followed by decimal digits representing the fractional * part of a, followed by the exponent symbol {@code 'e'} * ('\u0065'), followed by the sign of the exponent, followed * by a representation of n as a decimal integer, as produced by the * method {@link Long#toString(long, int)}, and zero-padded to include at * least two digits. * *

The number of digits in the result for the fractional part of * m or a is equal to the precision. If the precision is not * specified then the default value is {@code 6}. If the precision is less * than the number of digits which would appear after the decimal point in * the string returned by {@link Float#toString(float)} or {@link * Double#toString(double)} respectively, then the value will be rounded * using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up * algorithm}. Otherwise, zeros may be appended to reach the precision. * For a canonical representation of the value, use {@link * Float#toString(float)} or {@link Double#toString(double)} as * appropriate. * *

If the {@code ','} flag is given, then an {@link * FormatFlagsConversionMismatchException} will be thrown. * *

{@code 'E'} * '\u0045' * The upper-case variant of {@code 'e'}. The exponent symbol * will be {@code 'E'} ('\u0045'). * *
{@code 'g'} * '\u0067' * Requires the output to be formatted in general scientific notation * as described below. The localization * algorithm is applied. * *

After rounding for the precision, the formatting of the resulting * magnitude m depends on its value. * *

If m is greater than or equal to 10-4 but less * than 10precision then it is represented in decimal format. * *

If m is less than 10-4 or greater than or equal to * 10precision, then it is represented in computerized scientific notation. * *

The total number of significant digits in m is equal to the * precision. If the precision is not specified, then the default value is * {@code 6}. If the precision is {@code 0}, then it is taken to be * {@code 1}. * *

If the {@code '#'} flag is given then an {@link * FormatFlagsConversionMismatchException} will be thrown. * *

{@code 'G'} * '\u0047' * The upper-case variant of {@code 'g'}. * *
{@code 'f'} * '\u0066' * Requires the output to be formatted using decimal * format. The localization algorithm is * applied. * *

The result is a string that represents the sign and magnitude * (absolute value) of the argument. The formatting of the sign is * described in the localization * algorithm. The formatting of the magnitude m depends upon its * value. * *

If m NaN or infinite, the literal strings "NaN" or * "Infinity", respectively, will be output. These values are not * localized. * *

The magnitude is formatted as the integer part of m, with no * leading zeroes, followed by the decimal separator followed by one or * more decimal digits representing the fractional part of m. * *

The number of digits in the result for the fractional part of * m or a is equal to the precision. If the precision is not * specified then the default value is {@code 6}. If the precision is less * than the number of digits which would appear after the decimal point in * the string returned by {@link Float#toString(float)} or {@link * Double#toString(double)} respectively, then the value will be rounded * using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up * algorithm}. Otherwise, zeros may be appended to reach the precision. * For a canonical representation of the value, use {@link * Float#toString(float)} or {@link Double#toString(double)} as * appropriate. * *

{@code 'a'} * '\u0061' * Requires the output to be formatted in hexadecimal exponential * form. No localization is applied. * *

The result is a string that represents the sign and magnitude * (absolute value) of the argument x. * *

If x is negative or a negative-zero value then the result * will begin with {@code '-'} ('\u002d'). * *

If x is positive or a positive-zero value and the * {@code '+'} flag is given then the result will begin with {@code '+'} * ('\u002b'). * *

The formatting of the magnitude m depends upon its value. * *

    * *
  • If the value is NaN or infinite, the literal strings "NaN" or * "Infinity", respectively, will be output. * *
  • If m is zero then it is represented by the string * {@code "0x0.0p0"}. * *
  • If m is a {@code double} value with a normalized * representation then substrings are used to represent the significand and * exponent fields. The significand is represented by the characters * {@code "0x1."} followed by the hexadecimal representation of the rest * of the significand as a fraction. The exponent is represented by * {@code 'p'} ('\u0070') followed by a decimal string of the * unbiased exponent as if produced by invoking {@link * Integer#toString(int) Integer.toString} on the exponent value. If the * precision is specified, the value is rounded to the given number of * hexadecimal digits. * *
  • If m is a {@code double} value with a subnormal * representation then, unless the precision is specified to be in the range * 1 through 12, inclusive, the significand is represented by the characters * {@code '0x0.'} followed by the hexadecimal representation of the rest of * the significand as a fraction, and the exponent represented by * {@code 'p-1022'}. If the precision is in the interval * [1, 12], the subnormal value is normalized such that it * begins with the characters {@code '0x1.'}, rounded to the number of * hexadecimal digits of precision, and the exponent adjusted * accordingly. Note that there must be at least one nonzero digit in a * subnormal significand. * *
* *

If the {@code '('} or {@code ','} flags are given, then a {@link * FormatFlagsConversionMismatchException} will be thrown. * *

{@code 'A'} * '\u0041' * The upper-case variant of {@code 'a'}. The entire string * representing the number will be converted to upper case including the * {@code 'x'} ('\u0078') and {@code 'p'} * ('\u0070' and all hexadecimal digits {@code 'a'} - * {@code 'f'} ('\u0061' - '\u0066'). * *
* *

All flags defined for Byte, Short, Integer, and * Long apply. * *

If the {@code '#'} flag is given, then the decimal separator will * always be present. * *

If no flags are given the default formatting * is as follows: * *

    * *
  • The output is right-justified within the {@code width} * *
  • Negative numbers begin with a {@code '-'} * *
  • Positive numbers and positive zero do not include a sign or extra * leading space * *
  • No grouping separators are included * *
  • The decimal separator will only appear if a digit follows it * *
* *

The width is the minimum number of characters * to be written to the output. This includes any signs, digits, grouping * separators, decimal separators, exponential symbol, radix indicator, * parentheses, and strings representing infinity and NaN as applicable. If * the length of the converted value is less than the width then the output * will be padded by spaces ('\u0020') until the total number of * characters equals width. The padding is on the left by default. If the * {@code '-'} flag is given then the padding will be on the right. If width * is not specified then there is no minimum. * *

If the conversion is {@code 'e'}, * {@code 'E'} or {@code 'f'}, then the precision is the number of digits * after the decimal separator. If the precision is not specified, then it is * assumed to be {@code 6}. * *

If the conversion is {@code 'g'} or {@code 'G'}, then the precision is * the total number of significant digits in the resulting magnitude after * rounding. If the precision is not specified, then the default value is * {@code 6}. If the precision is {@code 0}, then it is taken to be * {@code 1}. * *

If the conversion is {@code 'a'} or {@code 'A'}, then the precision * is the number of hexadecimal digits after the radix point. If the * precision is not provided, then all of the digits as returned by {@link * Double#toHexString(double)} will be output. * *

BigDecimal * *

The following conversions may be applied {@link java.math.BigDecimal * BigDecimal}. * *

* *
{@code 'e'} * '\u0065' * Requires the output to be formatted using computerized scientific notation. The localization algorithm is applied. * *

The formatting of the magnitude m depends upon its value. * *

If m is positive-zero or negative-zero, then the exponent * will be {@code "+00"}. * *

Otherwise, the result is a string that represents the sign and * magnitude (absolute value) of the argument. The formatting of the sign * is described in the localization * algorithm. The formatting of the magnitude m depends upon its * value. * *

Let n be the unique integer such that 10n * <= m < 10n+1; then let a be the * mathematically exact quotient of m and 10n so * that 1 <= a < 10. The magnitude is then represented as the * integer part of a, as a single decimal digit, followed by the * decimal separator followed by decimal digits representing the fractional * part of a, followed by the exponent symbol {@code 'e'} * ('\u0065'), followed by the sign of the exponent, followed * by a representation of n as a decimal integer, as produced by the * method {@link Long#toString(long, int)}, and zero-padded to include at * least two digits. * *

The number of digits in the result for the fractional part of * m or a is equal to the precision. If the precision is not * specified then the default value is {@code 6}. If the precision is * less than the number of digits to the right of the decimal point then * the value will be rounded using the * {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up * algorithm}. Otherwise, zeros may be appended to reach the precision. * For a canonical representation of the value, use {@link * BigDecimal#toString()}. * *

If the {@code ','} flag is given, then an {@link * FormatFlagsConversionMismatchException} will be thrown. * *

{@code 'E'} * '\u0045' * The upper-case variant of {@code 'e'}. The exponent symbol * will be {@code 'E'} ('\u0045'). * *
{@code 'g'} * '\u0067' * Requires the output to be formatted in general scientific notation * as described below. The localization * algorithm is applied. * *

After rounding for the precision, the formatting of the resulting * magnitude m depends on its value. * *

If m is greater than or equal to 10-4 but less * than 10precision then it is represented in decimal format. * *

If m is less than 10-4 or greater than or equal to * 10precision, then it is represented in computerized scientific notation. * *

The total number of significant digits in m is equal to the * precision. If the precision is not specified, then the default value is * {@code 6}. If the precision is {@code 0}, then it is taken to be * {@code 1}. * *

If the {@code '#'} flag is given then an {@link * FormatFlagsConversionMismatchException} will be thrown. * *

{@code 'G'} * '\u0047' * The upper-case variant of {@code 'g'}. * *
{@code 'f'} * '\u0066' * Requires the output to be formatted using decimal * format. The localization algorithm is * applied. * *

The result is a string that represents the sign and magnitude * (absolute value) of the argument. The formatting of the sign is * described in the localization * algorithm. The formatting of the magnitude m depends upon its * value. * *

The magnitude is formatted as the integer part of m, with no * leading zeroes, followed by the decimal separator followed by one or * more decimal digits representing the fractional part of m. * *

The number of digits in the result for the fractional part of * m or a is equal to the precision. If the precision is not * specified then the default value is {@code 6}. If the precision is * less than the number of digits to the right of the decimal point * then the value will be rounded using the * {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up * algorithm}. Otherwise, zeros may be appended to reach the precision. * For a canonical representation of the value, use {@link * BigDecimal#toString()}. * *

* *

All flags defined for Byte, Short, Integer, and * Long apply. * *

If the {@code '#'} flag is given, then the decimal separator will * always be present. * *

The default behavior when no flags are * given is the same as for Float and Double. * *

The specification of width and precision is the same as defined for Float and * Double. * *

Date/Time

* *

This conversion may be applied to {@code long}, {@link Long}, {@link * Calendar}, {@link Date} and {@link TemporalAccessor TemporalAccessor} * *

* *
{@code 't'} * '\u0074' * Prefix for date and time conversion characters. *
{@code 'T'} * '\u0054' * The upper-case variant of {@code 't'}. * *
* *

The following date and time conversion character suffixes are defined * for the {@code 't'} and {@code 'T'} conversions. The types are similar to * but not completely identical to those defined by GNU {@code date} and * POSIX {@code strftime(3c)}. Additional conversion types are provided to * access Java-specific functionality (e.g. {@code 'L'} for milliseconds * within the second). * *

The following conversion characters are used for formatting times: * *

* *
{@code 'H'} * '\u0048' * Hour of the day for the 24-hour clock, formatted as two digits with * a leading zero as necessary i.e. {@code 00 - 23}. {@code 00} * corresponds to midnight. * *
{@code 'I'} * '\u0049' * Hour for the 12-hour clock, formatted as two digits with a leading * zero as necessary, i.e. {@code 01 - 12}. {@code 01} corresponds to * one o'clock (either morning or afternoon). * *
{@code 'k'} * '\u006b' * Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}. * {@code 0} corresponds to midnight. * *
{@code 'l'} * '\u006c' * Hour for the 12-hour clock, i.e. {@code 1 - 12}. {@code 1} * corresponds to one o'clock (either morning or afternoon). * *
{@code 'M'} * '\u004d' * Minute within the hour formatted as two digits with a leading zero * as necessary, i.e. {@code 00 - 59}. * *
{@code 'S'} * '\u0053' * Seconds within the minute, formatted as two digits with a leading * zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special * value required to support leap seconds). * *
{@code 'L'} * '\u004c' * Millisecond within the second formatted as three digits with * leading zeros as necessary, i.e. {@code 000 - 999}. * *
{@code 'N'} * '\u004e' * Nanosecond within the second, formatted as nine digits with leading * zeros as necessary, i.e. {@code 000000000 - 999999999}. The precision * of this value is limited by the resolution of the underlying operating * system or hardware. * *
{@code 'p'} * '\u0070' * Locale-specific {@linkplain * java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker * in lower case, e.g."{@code am}" or "{@code pm}". Use of the * conversion prefix {@code 'T'} forces this output to upper case. (Note * that {@code 'p'} produces lower-case output. This is different from * GNU {@code date} and POSIX {@code strftime(3c)} which produce * upper-case output.) * *
{@code 'z'} * '\u007a' * RFC 822 * style numeric time zone offset from GMT, e.g. {@code -0800}. This * value will be adjusted as necessary for Daylight Saving Time. For * {@code long}, {@link Long}, and {@link Date} the time zone used is * the {@linkplain TimeZone#getDefault() default time zone} for this * instance of the Java virtual machine. * *
{@code 'Z'} * '\u005a' * A string representing the abbreviation for the time zone. This * value will be adjusted as necessary for Daylight Saving Time. For * {@code long}, {@link Long}, and {@link Date} the time zone used is * the {@linkplain TimeZone#getDefault() default time zone} for this * instance of the Java virtual machine. The Formatter's locale will * supersede the locale of the argument (if any). * *
{@code 's'} * '\u0073' * Seconds since the beginning of the epoch starting at 1 January 1970 * {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to * {@code Long.MAX_VALUE/1000}. * *
{@code 'Q'} * '\u004f' * Milliseconds since the beginning of the epoch starting at 1 January * 1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to * {@code Long.MAX_VALUE}. The precision of this value is limited by * the resolution of the underlying operating system or hardware. * *
* *

The following conversion characters are used for formatting dates: * *

* *
{@code 'B'} * '\u0042' * Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths * full month name}, e.g. {@code "January"}, {@code "February"}. * *
{@code 'b'} * '\u0062' * Locale-specific {@linkplain * java.text.DateFormatSymbols#getShortMonths abbreviated month name}, * e.g. {@code "Jan"}, {@code "Feb"}. * *
{@code 'h'} * '\u0068' * Same as {@code 'b'}. * *
{@code 'A'} * '\u0041' * Locale-specific full name of the {@linkplain * java.text.DateFormatSymbols#getWeekdays day of the week}, * e.g. {@code "Sunday"}, {@code "Monday"} * *
{@code 'a'} * '\u0061' * Locale-specific short name of the {@linkplain * java.text.DateFormatSymbols#getShortWeekdays day of the week}, * e.g. {@code "Sun"}, {@code "Mon"} * *
{@code 'C'} * '\u0043' * Four-digit year divided by {@code 100}, formatted as two digits * with leading zero as necessary, i.e. {@code 00 - 99} * *
{@code 'Y'} * '\u0059' Year, formatted to at least * four digits with leading zeros as necessary, e.g. {@code 0092} equals * {@code 92} CE for the Gregorian calendar. * *
{@code 'y'} * '\u0079' * Last two digits of the year, formatted with leading zeros as * necessary, i.e. {@code 00 - 99}. * *
{@code 'j'} * '\u006a' * Day of year, formatted as three digits with leading zeros as * necessary, e.g. {@code 001 - 366} for the Gregorian calendar. * {@code 001} corresponds to the first day of the year. * *
{@code 'm'} * '\u006d' * Month, formatted as two digits with leading zeros as necessary, * i.e. {@code 01 - 13}, where "{@code 01}" is the first month of the * year and ("{@code 13}" is a special value required to support lunar * calendars). * *
{@code 'd'} * '\u0064' * Day of month, formatted as two digits with leading zeros as * necessary, i.e. {@code 01 - 31}, where "{@code 01}" is the first day * of the month. * *
{@code 'e'} * '\u0065' * Day of month, formatted as two digits, i.e. {@code 1 - 31} where * "{@code 1}" is the first day of the month. * *
* *

The following conversion characters are used for formatting common * date/time compositions. * *

* *
{@code 'R'} * '\u0052' * Time formatted for the 24-hour clock as {@code "%tH:%tM"} * *
{@code 'T'} * '\u0054' * Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}. * *
{@code 'r'} * '\u0072' * Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS * %Tp"}. The location of the morning or afternoon marker * ({@code '%Tp'}) may be locale-dependent. * *
{@code 'D'} * '\u0044' * Date formatted as {@code "%tm/%td/%ty"}. * *
{@code 'F'} * '\u0046' * ISO 8601 * complete date formatted as {@code "%tY-%tm-%td"}. * *
{@code 'c'} * '\u0063' * Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"}, * e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}. * *
* *

The {@code '-'} flag defined for General * conversions applies. If the {@code '#'} flag is given, then a {@link * FormatFlagsConversionMismatchException} will be thrown. * *

The width is the minimum number of characters to * be written to the output. If the length of the converted value is less than * the {@code width} then the output will be padded by spaces * ('\u0020') until the total number of characters equals width. * The padding is on the left by default. If the {@code '-'} flag is given * then the padding will be on the right. If width is not specified then there * is no minimum. * *

The precision is not applicable. If the precision is specified then an * {@link IllegalFormatPrecisionException} will be thrown. * *

Percent

* *

The conversion does not correspond to any argument. * *

* *
{@code '%'} * The result is a literal {@code '%'} ('\u0025') * *

The width is the minimum number of characters to * be written to the output including the {@code '%'}. If the length of the * converted value is less than the {@code width} then the output will be * padded by spaces ('\u0020') until the total number of * characters equals width. The padding is on the left. If width is not * specified then just the {@code '%'} is output. * *

The {@code '-'} flag defined for General * conversions applies. If any other flags are provided, then a * {@link FormatFlagsConversionMismatchException} will be thrown. * *

The precision is not applicable. If the precision is specified an * {@link IllegalFormatPrecisionException} will be thrown. * *

* *

Line Separator

* *

The conversion does not correspond to any argument. * *

* *
{@code 'n'} * the platform-specific line separator as returned by {@link * System#getProperty System.getProperty("line.separator")}. * *
* *

Flags, width, and precision are not applicable. If any are provided an * {@link IllegalFormatFlagsException}, {@link IllegalFormatWidthException}, * and {@link IllegalFormatPrecisionException}, respectively will be thrown. * *

Argument Index

* *

Format specifiers can reference arguments in three ways: * *

    * *
  • Explicit indexing is used when the format specifier contains an * argument index. The argument index is a decimal integer indicating the * position of the argument in the argument list. The first argument is * referenced by "{@code 1$}", the second by "{@code 2$}", etc. An argument * may be referenced more than once. * *

    For example: * *

     *   formatter.format("%4$s %3$s %2$s %1$s %4$s %3$s %2$s %1$s",
     *                    "a", "b", "c", "d")
     *   // -> "d c b a d c b a"
     * 
    * *
  • Relative indexing is used when the format specifier contains a * {@code '<'} ('\u003c') flag which causes the argument for * the previous format specifier to be re-used. If there is no previous * argument, then a {@link MissingFormatArgumentException} is thrown. * *
     *    formatter.format("%s %s %<s %<s", "a", "b", "c", "d")
     *    // -> "a b b b"
     *    // "c" and "d" are ignored because they are not referenced
     * 
    * *
  • Ordinary indexing is used when the format specifier contains * neither an argument index nor a {@code '<'} flag. Each format specifier * which uses ordinary indexing is assigned a sequential implicit index into * argument list which is independent of the indices used by explicit or * relative indexing. * *
     *   formatter.format("%s %s %s %s", "a", "b", "c", "d")
     *   // -> "a b c d"
     * 
    * *
* *

It is possible to have a format string which uses all forms of indexing, * for example: * *

 *   formatter.format("%2$s %s %<s %s", "a", "b", "c", "d")
 *   // -> "b a a b"
 *   // "c" and "d" are ignored because they are not referenced
 * 
* *

The maximum number of arguments is limited by the maximum dimension of a * Java array as defined by * The Java™ Virtual Machine Specification. * If the argument index is does not correspond to an * available argument, then a {@link MissingFormatArgumentException} is thrown. * *

If there are more arguments than format specifiers, the extra arguments * are ignored. * *

Unless otherwise specified, passing a {@code null} argument to any * method or constructor in this class will cause a {@link * NullPointerException} to be thrown. * * @author Iris Clark * @since 1.5 */ public final class Formatter implements Closeable, Flushable { private Appendable a; private final Locale l; private IOException lastException; private final char zero; private static double scaleUp; private String null_printable="null"; // 1 (sign) + 19 (max # sig digits) + 1 ('.') + 1 ('e') + 1 (sign) // + 3 (max # exp digits) + 4 (error) = 30 private static final int MAX_FD_CHARS = 30; /** * Returns a charset object for the given charset name. * @throws NullPointerException is csn is null * @throws UnsupportedEncodingException if the charset is not supported */ private static Charset toCharset(String csn) throws UnsupportedEncodingException { Objects.requireNonNull(csn, "charsetName"); try { return Charset.forName(csn); } catch (IllegalCharsetNameException|UnsupportedCharsetException unused) { // UnsupportedEncodingException should be thrown throw new UnsupportedEncodingException(csn); } } private static final Appendable nonNullAppendable(Appendable a) { if (a == null) return new StringBuilder(); return a; } private Formatter(Locale l, Appendable a) { this.a = a; this.l = l; this.zero = getZero(l); } private Formatter(Charset charset, Locale l, File file) throws FileNotFoundException { this(l, new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file), charset))); } public Formatter(BufferedWriter buffer) throws FileNotFoundException { this(buffer, Locale.getDefault()); } /** * Constructs a new formatter. * *

The destination of the formatted output is a {@link StringBuilder} * which may be retrieved by invoking {@link #out out()} and whose * current content may be converted into a string by invoking {@link * #toString toString()}. The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. */ public Formatter() { this(Locale.getDefault(Locale.Category.FORMAT), new StringBuilder()); } /** * Constructs a new formatter with the specified destination. * *

The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. * * @param a * Destination for the formatted output. If {@code a} is * {@code null} then a {@link StringBuilder} will be created. */ public Formatter(Appendable a) { this(Locale.getDefault(Locale.Category.FORMAT), nonNullAppendable(a)); } /** * Constructs a new formatter with the specified locale. * *

The destination of the formatted output is a {@link StringBuilder} * which may be retrieved by invoking {@link #out out()} and whose current * content may be converted into a string by invoking {@link #toString * toString()}. * * @param l * The {@linkplain java.util.Locale locale} to apply during * formatting. If {@code l} is {@code null} then no localization * is applied. */ public Formatter(Locale l) { this(l, new StringBuilder()); } /** * Constructs a new formatter with the specified destination and locale. * * @param a * Destination for the formatted output. If {@code a} is * {@code null} then a {@link StringBuilder} will be created. * * @param l * The {@linkplain java.util.Locale locale} to apply during * formatting. If {@code l} is {@code null} then no localization * is applied. */ public Formatter(Appendable a, Locale l) { this(l, nonNullAppendable(a)); } /** * Constructs a new formatter with the specified file name. * *

The charset used is the {@linkplain * java.nio.charset.Charset#defaultCharset() default charset} for this * instance of the Java virtual machine. * *

The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. * * @param fileName * The name of the file to use as the destination of this * formatter. If the file exists then it will be truncated to * zero size; otherwise, a new file will be created. The output * will be written to the file and is buffered. * * @throws SecurityException * If a security manager is present and {@link * SecurityManager#checkWrite checkWrite(fileName)} denies write * access to the file * * @throws FileNotFoundException * If the given file name does not denote an existing, writable * regular file and a new regular file of that name cannot be * created, or if some other error occurs while opening or * creating the file */ public Formatter(String fileName) throws FileNotFoundException { this(Locale.getDefault(Locale.Category.FORMAT), new BufferedWriter(new OutputStreamWriter(new FileOutputStream(fileName)))); } /** * Constructs a new formatter with the specified file name and charset. * *

The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. * * @param fileName * The name of the file to use as the destination of this * formatter. If the file exists then it will be truncated to * zero size; otherwise, a new file will be created. The output * will be written to the file and is buffered. * * @param csn * The name of a supported {@linkplain java.nio.charset.Charset * charset} * * @throws FileNotFoundException * If the given file name does not denote an existing, writable * regular file and a new regular file of that name cannot be * created, or if some other error occurs while opening or * creating the file * * @throws SecurityException * If a security manager is present and {@link * SecurityManager#checkWrite checkWrite(fileName)} denies write * access to the file * * @throws UnsupportedEncodingException * If the named charset is not supported */ public Formatter(String fileName, String csn) throws FileNotFoundException, UnsupportedEncodingException { this(fileName, csn, Locale.getDefault(Locale.Category.FORMAT)); } /** * Constructs a new formatter with the specified file name, charset, and * locale. * * @param fileName * The name of the file to use as the destination of this * formatter. If the file exists then it will be truncated to * zero size; otherwise, a new file will be created. The output * will be written to the file and is buffered. * * @param csn * The name of a supported {@linkplain java.nio.charset.Charset * charset} * * @param l * The {@linkplain java.util.Locale locale} to apply during * formatting. If {@code l} is {@code null} then no localization * is applied. * * @throws FileNotFoundException * If the given file name does not denote an existing, writable * regular file and a new regular file of that name cannot be * created, or if some other error occurs while opening or * creating the file * * @throws SecurityException * If a security manager is present and {@link * SecurityManager#checkWrite checkWrite(fileName)} denies write * access to the file * * @throws UnsupportedEncodingException * If the named charset is not supported */ public Formatter(String fileName, String csn, Locale l) throws FileNotFoundException, UnsupportedEncodingException { this(toCharset(csn), l, new File(fileName)); } /** * Constructs a new formatter with the specified file. * *

The charset used is the {@linkplain * java.nio.charset.Charset#defaultCharset() default charset} for this * instance of the Java virtual machine. * *

The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. * * @param file * The file to use as the destination of this formatter. If the * file exists then it will be truncated to zero size; otherwise, * a new file will be created. The output will be written to the * file and is buffered. * * @throws SecurityException * If a security manager is present and {@link * SecurityManager#checkWrite checkWrite(file.getPath())} denies * write access to the file * * @throws FileNotFoundException * If the given file object does not denote an existing, writable * regular file and a new regular file of that name cannot be * created, or if some other error occurs while opening or * creating the file */ public Formatter(File file) throws FileNotFoundException { this(Locale.getDefault(Locale.Category.FORMAT), new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file)))); } /** * Constructs a new formatter with the specified file and charset. * *

The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. * * @param file * The file to use as the destination of this formatter. If the * file exists then it will be truncated to zero size; otherwise, * a new file will be created. The output will be written to the * file and is buffered. * * @param csn * The name of a supported {@linkplain java.nio.charset.Charset * charset} * * @throws FileNotFoundException * If the given file object does not denote an existing, writable * regular file and a new regular file of that name cannot be * created, or if some other error occurs while opening or * creating the file * * @throws SecurityException * If a security manager is present and {@link * SecurityManager#checkWrite checkWrite(file.getPath())} denies * write access to the file * * @throws UnsupportedEncodingException * If the named charset is not supported */ public Formatter(File file, String csn) throws FileNotFoundException, UnsupportedEncodingException { this(file, csn, Locale.getDefault(Locale.Category.FORMAT)); } /** * Constructs a new formatter with the specified file, charset, and * locale. * * @param file * The file to use as the destination of this formatter. If the * file exists then it will be truncated to zero size; otherwise, * a new file will be created. The output will be written to the * file and is buffered. * * @param csn * The name of a supported {@linkplain java.nio.charset.Charset * charset} * * @param l * The {@linkplain java.util.Locale locale} to apply during * formatting. If {@code l} is {@code null} then no localization * is applied. * * @throws FileNotFoundException * If the given file object does not denote an existing, writable * regular file and a new regular file of that name cannot be * created, or if some other error occurs while opening or * creating the file * * @throws SecurityException * If a security manager is present and {@link * SecurityManager#checkWrite checkWrite(file.getPath())} denies * write access to the file * * @throws UnsupportedEncodingException * If the named charset is not supported */ public Formatter(File file, String csn, Locale l) throws FileNotFoundException, UnsupportedEncodingException { this(toCharset(csn), l, file); } /** * Constructs a new formatter with the specified print stream. * *

The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. * *

Characters are written to the given {@link java.io.PrintStream * PrintStream} object and are therefore encoded using that object's * charset. * * @param ps * The stream to use as the destination of this formatter. */ public Formatter(PrintStream ps) { this(Locale.getDefault(Locale.Category.FORMAT), (Appendable)Objects.requireNonNull(ps)); } /** * Constructs a new formatter with the specified output stream. * *

The charset used is the {@linkplain * java.nio.charset.Charset#defaultCharset() default charset} for this * instance of the Java virtual machine. * *

The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. * * @param os * The output stream to use as the destination of this formatter. * The output will be buffered. */ public Formatter(OutputStream os) { this(Locale.getDefault(Locale.Category.FORMAT), new BufferedWriter(new OutputStreamWriter(os))); } /** * Constructs a new formatter with the specified output stream and * charset. * *

The locale used is the {@linkplain * Locale#getDefault(Locale.Category) default locale} for * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java * virtual machine. * * @param os * The output stream to use as the destination of this formatter. * The output will be buffered. * * @param csn * The name of a supported {@linkplain java.nio.charset.Charset * charset} * * @throws UnsupportedEncodingException * If the named charset is not supported */ public Formatter(OutputStream os, String csn) throws UnsupportedEncodingException { this(os, csn, Locale.getDefault(Locale.Category.FORMAT)); } /** * Constructs a new formatter with the specified output stream, charset, * and locale. * * @param os * The output stream to use as the destination of this formatter. * The output will be buffered. * * @param csn * The name of a supported {@linkplain java.nio.charset.Charset * charset} * * @param l * The {@linkplain java.util.Locale locale} to apply during * formatting. If {@code l} is {@code null} then no localization * is applied. * * @throws UnsupportedEncodingException * If the named charset is not supported */ public Formatter(OutputStream os, String csn, Locale l) throws UnsupportedEncodingException { this(l, new BufferedWriter(new OutputStreamWriter(os, csn))); } private static char getZero(Locale l) { if ((l != null) && !l.equals(Locale.US)) { DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l); return dfs.getZeroDigit(); } else { return '0'; } } /** * Returns the locale set by the construction of this formatter. * *

The {@link #format(java.util.Locale,String,Object...) format} method * for this object which has a locale argument does not change this value. * * @return {@code null} if no localization is applied, otherwise a * locale * * @throws FormatterClosedException * If this formatter has been closed by invoking its {@link * #close()} method */ public Locale locale() { ensureOpen(); return l; } /** * Returns the destination for the output. * * @return The destination for the output * * @throws FormatterClosedException * If this formatter has been closed by invoking its {@link * #close()} method */ public Appendable out() { ensureOpen(); return a; } /** * Returns the result of invoking {@code toString()} on the destination * for the output. For example, the following code formats text into a * {@link StringBuilder} then retrieves the resultant string: * *

     *   Formatter f = new Formatter();
     *   f.format("Last reboot at %tc", lastRebootDate);
     *   String s = f.toString();
     *   // -> s == "Last reboot at Sat Jan 01 00:00:00 PST 2000"
     * 
* *

An invocation of this method behaves in exactly the same way as the * invocation * *

     *     out().toString() 
* *

Depending on the specification of {@code toString} for the {@link * Appendable}, the returned string may or may not contain the characters * written to the destination. For instance, buffers typically return * their contents in {@code toString()}, but streams cannot since the * data is discarded. * * @return The result of invoking {@code toString()} on the destination * for the output * * @throws FormatterClosedException * If this formatter has been closed by invoking its {@link * #close()} method */ public String toString() { ensureOpen(); return a.toString(); } /** * Flushes this formatter. If the destination implements the {@link * java.io.Flushable} interface, its {@code flush} method will be invoked. * *

Flushing a formatter writes any buffered output in the destination * to the underlying stream. * * @throws FormatterClosedException * If this formatter has been closed by invoking its {@link * #close()} method */ public void flush() { ensureOpen(); if (a instanceof Flushable) { try { ((Flushable)a).flush(); } catch (IOException ioe) { lastException = ioe; } } } /** * Closes this formatter. If the destination implements the {@link * java.io.Closeable} interface, its {@code close} method will be invoked. * *

Closing a formatter allows it to release resources it may be holding * (such as open files). If the formatter is already closed, then invoking * this method has no effect. * *

Attempting to invoke any methods except {@link #ioException()} in * this formatter after it has been closed will result in a {@link * FormatterClosedException}. */ public void close() { if (a == null) return; try { if (a instanceof Closeable) ((Closeable)a).close(); } catch (IOException ioe) { lastException = ioe; } finally { a = null; } } private void ensureOpen() { if (a == null) throw new FormatterClosedException(); } /** * Returns the {@code IOException} last thrown by this formatter's {@link * Appendable}. * *

If the destination's {@code append()} method never throws * {@code IOException}, then this method will always return {@code null}. * * @return The last exception thrown by the Appendable or {@code null} if * no such exception exists. */ public IOException ioException() { return lastException; } /** * Writes a formatted string to this object's destination using the * specified format string and arguments. The locale used is the one * defined during the construction of this formatter. * * @param format * A format string as described in Format string * syntax. * * @param args * Arguments referenced by the format specifiers in the format * string. If there are more arguments than format specifiers, the * extra arguments are ignored. The maximum number of arguments is * limited by the maximum dimension of a Java array as defined by * The Java™ Virtual Machine Specification. * * @throws IllegalFormatException * If a format string contains an illegal syntax, a format * specifier that is incompatible with the given arguments, * insufficient arguments given the format string, or other * illegal conditions. For specification of all possible * formatting errors, see the Details * section of the formatter class specification. * * @throws FormatterClosedException * If this formatter has been closed by invoking its {@link * #close()} method * * @return This formatter */ public Formatter format(String format, Object ... args) { return format(l, format, args); } /** * Writes a formatted string to this object's destination using the * specified locale, format string, and arguments. * * @param l * The {@linkplain java.util.Locale locale} to apply during * formatting. If {@code l} is {@code null} then no localization * is applied. This does not change this object's locale that was * set during construction. * * @param format * A format string as described in Format string * syntax * * @param args * Arguments referenced by the format specifiers in the format * string. If there are more arguments than format specifiers, the * extra arguments are ignored. The maximum number of arguments is * limited by the maximum dimension of a Java array as defined by * The Java™ Virtual Machine Specification. * * @throws IllegalFormatException * If a format string contains an illegal syntax, a format * specifier that is incompatible with the given arguments, * insufficient arguments given the format string, or other * illegal conditions. For specification of all possible * formatting errors, see the Details * section of the formatter class specification. * * @throws FormatterClosedException * If this formatter has been closed by invoking its {@link * #close()} method * * @return This formatter */ public Formatter format(Locale l, String format, Object ... args) { ensureOpen(); // index of last argument referenced int last = -1; // last ordinary index int lasto = -1; FormatString[] fsa = parse(format); for (int i = 0; i < fsa.length; i++) { FormatString fs = fsa[i]; int index = fs.index(); try { switch (index) { case -2: // fixed string, "%n", or "%%" fs.print(null, l); break; case -1: // relative index if (last < 0 || (args != null && last > args.length - 1)) throw new MissingFormatArgumentException(fs.toString()); fs.print((args == null ? null : args[last]), l); break; case 0: // ordinary index lasto++; last = lasto; if (args != null && lasto > args.length - 1) throw new MissingFormatArgumentException(fs.toString()); fs.print((args == null ? null : args[lasto]), l); break; default: // explicit index last = index - 1; if (args != null && last > args.length - 1) throw new MissingFormatArgumentException(fs.toString()); fs.print((args == null ? null : args[last]), l); break; } } catch (IOException x) { lastException = x; } } return this; } // %[argument_index$][flags][width][.precision][t]conversion private static final String formatSpecifier = "%(\\d+\\$)?([-#+ 0,(\\<]*)?(\\d+)?(\\.\\d+)?([tT])?([a-zA-Z%])"; private static Pattern fsPattern = Pattern.compile(formatSpecifier); /** * Finds format specifiers in the format string. */ private FormatString[] parse(String s) { ArrayList al = new ArrayList<>(); Matcher m = fsPattern.matcher(s); for (int i = 0, len = s.length(); i < len; ) { if (m.find(i)) { // Anything between the start of the string and the beginning // of the format specifier is either fixed text or contains // an invalid format string. if (m.start() != i) { // Make sure we didn't miss any invalid format specifiers checkText(s, i, m.start()); // Assume previous characters were fixed text al.add(new FixedString(s.substring(i, m.start()))); } al.add(new FormatSpecifier(m)); i = m.end(); } else { // No more valid format specifiers. Check for possible invalid // format specifiers. checkText(s, i, len); // The rest of the string is fixed text al.add(new FixedString(s.substring(i))); break; } } return al.toArray(new FormatString[al.size()]); } private static void checkText(String s, int start, int end) { for (int i = start; i < end; i++) { // Any '%' found in the region starts an invalid format specifier. if (s.charAt(i) == '%') { char c = (i == end - 1) ? '%' : s.charAt(i + 1); throw new UnknownFormatConversionException(String.valueOf(c)); } } } private interface FormatString { int index(); void print(Object arg, Locale l) throws IOException; String toString(); } private class FixedString implements FormatString { private String s; FixedString(String s) { this.s = s; } public int index() { return -2; } public void print(Object arg, Locale l) throws IOException { a.append(s); } public String toString() { return s; } } /** * Enum for {@code BigDecimal} formatting. */ public enum BigDecimalLayoutForm { /** * Format the {@code BigDecimal} in computerized scientific notation. */ SCIENTIFIC, /** * Format the {@code BigDecimal} as a decimal number. */ DECIMAL_FLOAT }; private class FormatSpecifier implements FormatString { private int index = -1; private Flags f = Flags.NONE; private int width; private int precision; private boolean dt = false; private char c; private int index(String s) { if (s != null) { try { index = Integer.parseInt(s.substring(0, s.length() - 1)); } catch (NumberFormatException x) { assert(false); } } else { index = 0; } return index; } public int index() { return index; } private Flags flags(String s) { f = Flags.parse(s); if (f.contains(Flags.PREVIOUS)) index = -1; return f; } Flags flags() { return f; } private int width(String s) { width = -1; if (s != null) { try { width = Integer.parseInt(s); if (width < 0) throw new IllegalFormatWidthException(width); } catch (NumberFormatException x) { assert(false); } } return width; } int width() { return width; } private int precision(String s) { precision = -1; if (s != null) { try { // remove the '.' precision = Integer.parseInt(s.substring(1)); if (precision < 0) throw new IllegalFormatPrecisionException(precision); } catch (NumberFormatException x) { assert(false); } } return precision; } int precision() { return precision; } private char conversion(String s) { c = s.charAt(0); if (!dt) { if (!Conversion.isValid(c)) throw new UnknownFormatConversionException(String.valueOf(c)); if (Character.isUpperCase(c)) f.add(Flags.UPPERCASE); c = Character.toLowerCase(c); if (Conversion.isText(c)) index = -2; } return c; } private char conversion() { return c; } FormatSpecifier(Matcher m) { int idx = 1; index(m.group(idx++)); flags(m.group(idx++)); width(m.group(idx++)); precision(m.group(idx++)); String tT = m.group(idx++); if (tT != null) { dt = true; if (tT.equals("T")) f.add(Flags.UPPERCASE); } conversion(m.group(idx)); if (dt) checkDateTime(); else if (Conversion.isGeneral(c)) checkGeneral(); else if (Conversion.isCharacter(c)) checkCharacter(); else if (Conversion.isInteger(c)) checkInteger(); else if (Conversion.isFloat(c)) checkFloat(); else if (Conversion.isText(c)) checkText(); else throw new UnknownFormatConversionException(String.valueOf(c)); } public void print(Object arg, Locale l) throws IOException { if (dt) { printDateTime(arg, l); return; } switch(c) { case Conversion.DECIMAL_INTEGER: case Conversion.OCTAL_INTEGER: case Conversion.HEXADECIMAL_INTEGER: printInteger(arg, l); break; case Conversion.SCIENTIFIC: case Conversion.GENERAL: case Conversion.DECIMAL_FLOAT: case Conversion.HEXADECIMAL_FLOAT: printFloat(arg, l); break; case Conversion.CHARACTER: case Conversion.CHARACTER_UPPER: printCharacter(arg); break; case Conversion.BOOLEAN: printBoolean(arg); break; case Conversion.STRING: printString(arg, l); break; case Conversion.HASHCODE: printHashCode(arg); break; case Conversion.LINE_SEPARATOR: a.append(System.lineSeparator()); break; case Conversion.PERCENT_SIGN: a.append('%'); break; default: assert false; } } private void printInteger(Object arg, Locale l) throws IOException { if (arg == null) print(null_printable); else if (arg instanceof Byte) print(((Byte)arg).byteValue(), l); else if (arg instanceof Short) print(((Short)arg).shortValue(), l); else if (arg instanceof Integer) print(((Integer)arg).intValue(), l); else if (arg instanceof Long) print(((Long)arg).longValue(), l); else if (arg instanceof BigInteger) print(((BigInteger)arg), l); else failConversion(c, arg); } private void printFloat(Object arg, Locale l) throws IOException { if (arg == null) print(null_printable); else if (arg instanceof Float) print(((Float)arg).floatValue(), l); else if (arg instanceof Double) print(((Double)arg).doubleValue(), l); else if (arg instanceof BigDecimal) print(((BigDecimal)arg), l); else failConversion(c, arg); } private void printDateTime(Object arg, Locale l) throws IOException { if (arg == null) { print(null_printable); return; } Calendar cal = null; // Instead of Calendar.setLenient(true), perhaps we should // wrap the IllegalArgumentException that might be thrown? if (arg instanceof Long) { // Note that the following method uses an instance of the // default time zone (TimeZone.getDefaultRef(). cal = Calendar.getInstance(l == null ? Locale.US : l); cal.setTimeInMillis((Long)arg); } else if (arg instanceof Date) { // Note that the following method uses an instance of the // default time zone (TimeZone.getDefaultRef(). cal = Calendar.getInstance(l == null ? Locale.US : l); cal.setTime((Date)arg); } else if (arg instanceof Calendar) { cal = (Calendar) ((Calendar) arg).clone(); cal.setLenient(true); } else if (arg instanceof TemporalAccessor) { print((TemporalAccessor) arg, c, l); return; } else { failConversion(c, arg); } // Use the provided locale so that invocations of // localizedMagnitude() use optimizations for null. print(cal, c, l); } private void printCharacter(Object arg) throws IOException { if (arg == null) { //print("null"); print(null_printable); return; } String s = null; if (arg instanceof Character) { s = ((Character)arg).toString(); } else if (arg instanceof Byte) { byte i = ((Byte)arg).byteValue(); if (Character.isValidCodePoint(i)) s = new String(Character.toChars(i)); else throw new IllegalFormatCodePointException(i); } else if (arg instanceof Short) { short i = ((Short)arg).shortValue(); if (Character.isValidCodePoint(i)) s = new String(Character.toChars(i)); else throw new IllegalFormatCodePointException(i); } else if (arg instanceof Integer) { int i = ((Integer)arg).intValue(); if (Character.isValidCodePoint(i)) s = new String(Character.toChars(i)); else throw new IllegalFormatCodePointException(i); } else { failConversion(c, arg); } print(s); } /* private void printString(Object arg, Locale l) throws IOException { if (arg instanceof Formattable) { Formatter fmt = Formatter.this; if (fmt.locale() != l) fmt = new Formatter(fmt.out(), l); ((Formattable)arg).formatTo(fmt, f.valueOf(), width, precision); } else { if (f.contains(Flags.ALTERNATE)) failMismatch(Flags.ALTERNATE, 's'); if (arg == null) print("null"); else print(arg.toString()); } } */ private void printString(Object arg, Locale l) throws IOException { if (arg instanceof Formattable) { //Formatter fmt = Formatter.this; java.util.Formatter fmt = new java.util.Formatter(Formatter.this.out(), l); /* if (fmt.locale() != l) { fmt = new java.util.Formatter(fmt.out(), l); } */ ((Formattable)arg).formatTo(fmt, f.valueOf(), width, precision); } else { if (f.contains(Flags.ALTERNATE)) failMismatch(Flags.ALTERNATE, 's'); if (arg == null) print(null_printable); else print(arg.toString()); } } private void printBoolean(Object arg) throws IOException { String s; if (arg != null) s = ((arg instanceof Boolean) ? ((Boolean)arg).toString() : Boolean.toString(true)); else s = Boolean.toString(false); print(s); } private void printHashCode(Object arg) throws IOException { String s = (arg == null ? null_printable : Integer.toHexString(arg.hashCode())); print(s); } private void print(String s) throws IOException { if (precision != -1 && precision < s.length()) s = s.substring(0, precision); if (f.contains(Flags.UPPERCASE)) s = s.toUpperCase(); a.append(justify(s)); } private String justify(String s) { if (width == -1) return s; StringBuilder sb = new StringBuilder(); boolean pad = f.contains(Flags.LEFT_JUSTIFY); int sp = width - s.length(); if (!pad) for (int i = 0; i < sp; i++) sb.append(' '); sb.append(s); if (pad) for (int i = 0; i < sp; i++) sb.append(' '); return sb.toString(); } public String toString() { StringBuilder sb = new StringBuilder("%"); // Flags.UPPERCASE is set internally for legal conversions. Flags dupf = f.dup().remove(Flags.UPPERCASE); sb.append(dupf.toString()); if (index > 0) sb.append(index).append('$'); if (width != -1) sb.append(width); if (precision != -1) sb.append('.').append(precision); if (dt) sb.append(f.contains(Flags.UPPERCASE) ? 'T' : 't'); sb.append(f.contains(Flags.UPPERCASE) ? Character.toUpperCase(c) : c); return sb.toString(); } private void checkGeneral() { if ((c == Conversion.BOOLEAN || c == Conversion.HASHCODE) && f.contains(Flags.ALTERNATE)) failMismatch(Flags.ALTERNATE, c); // '-' requires a width if (width == -1 && f.contains(Flags.LEFT_JUSTIFY)) throw new MissingFormatWidthException(toString()); checkBadFlags(Flags.PLUS, Flags.LEADING_SPACE, Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES); } private void checkDateTime() { if (precision != -1) throw new IllegalFormatPrecisionException(precision); if (!DateTime.isValid(c)) throw new UnknownFormatConversionException("t" + c); checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE, Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES); // '-' requires a width if (width == -1 && f.contains(Flags.LEFT_JUSTIFY)) throw new MissingFormatWidthException(toString()); } private void checkCharacter() { if (precision != -1) throw new IllegalFormatPrecisionException(precision); checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE, Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES); // '-' requires a width if (width == -1 && f.contains(Flags.LEFT_JUSTIFY)) throw new MissingFormatWidthException(toString()); } private void checkInteger() { checkNumeric(); if (precision != -1) throw new IllegalFormatPrecisionException(precision); if (c == Conversion.DECIMAL_INTEGER) checkBadFlags(Flags.ALTERNATE); else if (c == Conversion.OCTAL_INTEGER) checkBadFlags(Flags.GROUP); else checkBadFlags(Flags.GROUP); } private void checkBadFlags(Flags ... badFlags) { for (int i = 0; i < badFlags.length; i++) if (f.contains(badFlags[i])) failMismatch(badFlags[i], c); } private void checkFloat() { checkNumeric(); if (c == Conversion.DECIMAL_FLOAT) { } else if (c == Conversion.HEXADECIMAL_FLOAT) { checkBadFlags(Flags.PARENTHESES, Flags.GROUP); } else if (c == Conversion.SCIENTIFIC) { checkBadFlags(Flags.GROUP); } else if (c == Conversion.GENERAL) { checkBadFlags(Flags.ALTERNATE); } } private void checkNumeric() { if (width != -1 && width < 0) throw new IllegalFormatWidthException(width); if (precision != -1 && precision < 0) throw new IllegalFormatPrecisionException(precision); // '-' and '0' require a width if (width == -1 && (f.contains(Flags.LEFT_JUSTIFY) || f.contains(Flags.ZERO_PAD))) throw new MissingFormatWidthException(toString()); // bad combination if ((f.contains(Flags.PLUS) && f.contains(Flags.LEADING_SPACE)) || (f.contains(Flags.LEFT_JUSTIFY) && f.contains(Flags.ZERO_PAD))) throw new IllegalFormatFlagsException(f.toString()); } private void checkText() { if (precision != -1) throw new IllegalFormatPrecisionException(precision); switch (c) { case Conversion.PERCENT_SIGN: if (f.valueOf() != Flags.LEFT_JUSTIFY.valueOf() && f.valueOf() != Flags.NONE.valueOf()) throw new IllegalFormatFlagsException(f.toString()); // '-' requires a width if (width == -1 && f.contains(Flags.LEFT_JUSTIFY)) throw new MissingFormatWidthException(toString()); break; case Conversion.LINE_SEPARATOR: if (width != -1) throw new IllegalFormatWidthException(width); if (f.valueOf() != Flags.NONE.valueOf()) throw new IllegalFormatFlagsException(f.toString()); break; default: assert false; } } private void print(byte value, Locale l) throws IOException { long v = value; if (value < 0 && (c == Conversion.OCTAL_INTEGER || c == Conversion.HEXADECIMAL_INTEGER)) { v += (1L << 8); assert v >= 0 : v; } print(v, l); } private void print(short value, Locale l) throws IOException { long v = value; if (value < 0 && (c == Conversion.OCTAL_INTEGER || c == Conversion.HEXADECIMAL_INTEGER)) { v += (1L << 16); assert v >= 0 : v; } print(v, l); } private void print(int value, Locale l) throws IOException { long v = value; if (value < 0 && (c == Conversion.OCTAL_INTEGER || c == Conversion.HEXADECIMAL_INTEGER)) { v += (1L << 32); assert v >= 0 : v; } print(v, l); } private void print(long value, Locale l) throws IOException { StringBuilder sb = new StringBuilder(); if (c == Conversion.DECIMAL_INTEGER) { boolean neg = value < 0; char[] va; if (value < 0) va = Long.toString(value, 10).substring(1).toCharArray(); else va = Long.toString(value, 10).toCharArray(); // leading sign indicator leadingSign(sb, neg); // the value localizedMagnitude(sb, va, f, adjustWidth(width, f, neg), l); // trailing sign indicator trailingSign(sb, neg); } else if (c == Conversion.OCTAL_INTEGER) { checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE, Flags.PLUS); String s = Long.toOctalString(value); int len = (f.contains(Flags.ALTERNATE) ? s.length() + 1 : s.length()); // apply ALTERNATE (radix indicator for octal) before ZERO_PAD if (f.contains(Flags.ALTERNATE)) sb.append('0'); if (f.contains(Flags.ZERO_PAD)) for (int i = 0; i < width - len; i++) sb.append('0'); sb.append(s); } else if (c == Conversion.HEXADECIMAL_INTEGER) { checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE, Flags.PLUS); String s = Long.toHexString(value); int len = (f.contains(Flags.ALTERNATE) ? s.length() + 2 : s.length()); // apply ALTERNATE (radix indicator for hex) before ZERO_PAD if (f.contains(Flags.ALTERNATE)) sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x"); if (f.contains(Flags.ZERO_PAD)) for (int i = 0; i < width - len; i++) sb.append('0'); if (f.contains(Flags.UPPERCASE)) s = s.toUpperCase(); sb.append(s); } // justify based on width a.append(justify(sb.toString())); } // neg := val < 0 private StringBuilder leadingSign(StringBuilder sb, boolean neg) { if (!neg) { if (f.contains(Flags.PLUS)) { sb.append('+'); } else if (f.contains(Flags.LEADING_SPACE)) { sb.append(' '); } } else { if (f.contains(Flags.PARENTHESES)) sb.append('('); else sb.append('-'); } return sb; } // neg := val < 0 private StringBuilder trailingSign(StringBuilder sb, boolean neg) { if (neg && f.contains(Flags.PARENTHESES)) sb.append(')'); return sb; } private void print(BigInteger value, Locale l) throws IOException { StringBuilder sb = new StringBuilder(); boolean neg = value.signum() == -1; BigInteger v = value.abs(); // leading sign indicator leadingSign(sb, neg); // the value if (c == Conversion.DECIMAL_INTEGER) { char[] va = v.toString().toCharArray(); localizedMagnitude(sb, va, f, adjustWidth(width, f, neg), l); } else if (c == Conversion.OCTAL_INTEGER) { String s = v.toString(8); int len = s.length() + sb.length(); if (neg && f.contains(Flags.PARENTHESES)) len++; // apply ALTERNATE (radix indicator for octal) before ZERO_PAD if (f.contains(Flags.ALTERNATE)) { len++; sb.append('0'); } if (f.contains(Flags.ZERO_PAD)) { for (int i = 0; i < width - len; i++) sb.append('0'); } sb.append(s); } else if (c == Conversion.HEXADECIMAL_INTEGER) { String s = v.toString(16); int len = s.length() + sb.length(); if (neg && f.contains(Flags.PARENTHESES)) len++; // apply ALTERNATE (radix indicator for hex) before ZERO_PAD if (f.contains(Flags.ALTERNATE)) { len += 2; sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x"); } if (f.contains(Flags.ZERO_PAD)) for (int i = 0; i < width - len; i++) sb.append('0'); if (f.contains(Flags.UPPERCASE)) s = s.toUpperCase(); sb.append(s); } // trailing sign indicator trailingSign(sb, (value.signum() == -1)); // justify based on width a.append(justify(sb.toString())); } private void print(float value, Locale l) throws IOException { print((double) value, l); } private void print(double value, Locale l) throws IOException { StringBuilder sb = new StringBuilder(); boolean neg = Double.compare(value, 0.0) == -1; if (!Double.isNaN(value)) { double v = Math.abs(value); // leading sign indicator leadingSign(sb, neg); // the value if (!Double.isInfinite(v)) print(sb, v, l, f, c, precision, neg); else sb.append(f.contains(Flags.UPPERCASE) ? "INFINITY" : "Infinity"); // trailing sign indicator trailingSign(sb, neg); } else { sb.append(f.contains(Flags.UPPERCASE) ? "NAN" : "NaN"); } // justify based on width a.append(justify(sb.toString())); } // !Double.isInfinite(value) && !Double.isNaN(value) private void print(StringBuilder sb, double value, Locale l, Flags f, char c, int precision, boolean neg) throws IOException { if (c == Conversion.SCIENTIFIC) { // Create a new FormattedFloatingDecimal with the desired // precision. int prec = (precision == -1 ? 6 : precision); FormattedFloatingDecimal fd = FormattedFloatingDecimal.valueOf(value, prec, FormattedFloatingDecimal.Form.SCIENTIFIC); char[] mant = addZeros(fd.getMantissa(), prec); // If the precision is zero and the '#' flag is set, add the // requested decimal point. if (f.contains(Flags.ALTERNATE) && (prec == 0)) mant = addDot(mant); char[] exp = (value == 0.0) ? new char[] {'+','0','0'} : fd.getExponent(); int newW = width; if (width != -1) newW = adjustWidth(width - exp.length - 1, f, neg); localizedMagnitude(sb, mant, f, newW, l); sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e'); Flags flags = f.dup().remove(Flags.GROUP); char sign = exp[0]; assert(sign == '+' || sign == '-'); sb.append(sign); char[] tmp = new char[exp.length - 1]; System.arraycopy(exp, 1, tmp, 0, exp.length - 1); sb.append(localizedMagnitude(null, tmp, flags, -1, l)); } else if (c == Conversion.DECIMAL_FLOAT) { // Create a new FormattedFloatingDecimal with the desired // precision. int prec = (precision == -1 ? 6 : precision); FormattedFloatingDecimal fd = FormattedFloatingDecimal.valueOf(value, prec, FormattedFloatingDecimal.Form.DECIMAL_FLOAT); char[] mant = addZeros(fd.getMantissa(), prec); // If the precision is zero and the '#' flag is set, add the // requested decimal point. if (f.contains(Flags.ALTERNATE) && (prec == 0)) mant = addDot(mant); int newW = width; if (width != -1) newW = adjustWidth(width, f, neg); localizedMagnitude(sb, mant, f, newW, l); } else if (c == Conversion.GENERAL) { int prec = precision; if (precision == -1) prec = 6; else if (precision == 0) prec = 1; char[] exp; char[] mant; int expRounded; if (value == 0.0) { exp = null; mant = new char[] {'0'}; expRounded = 0; } else { FormattedFloatingDecimal fd = FormattedFloatingDecimal.valueOf(value, prec, FormattedFloatingDecimal.Form.GENERAL); exp = fd.getExponent(); mant = fd.getMantissa(); expRounded = fd.getExponentRounded(); } if (exp != null) { prec -= 1; } else { prec -= expRounded + 1; } mant = addZeros(mant, prec); // If the precision is zero and the '#' flag is set, add the // requested decimal point. if (f.contains(Flags.ALTERNATE) && (prec == 0)) mant = addDot(mant); int newW = width; if (width != -1) { if (exp != null) newW = adjustWidth(width - exp.length - 1, f, neg); else newW = adjustWidth(width, f, neg); } localizedMagnitude(sb, mant, f, newW, l); if (exp != null) { sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e'); Flags flags = f.dup().remove(Flags.GROUP); char sign = exp[0]; assert(sign == '+' || sign == '-'); sb.append(sign); char[] tmp = new char[exp.length - 1]; System.arraycopy(exp, 1, tmp, 0, exp.length - 1); sb.append(localizedMagnitude(null, tmp, flags, -1, l)); } } else if (c == Conversion.HEXADECIMAL_FLOAT) { int prec = precision; if (precision == -1) // assume that we want all of the digits prec = 0; else if (precision == 0) prec = 1; String s = hexDouble(value, prec); char[] va; boolean upper = f.contains(Flags.UPPERCASE); sb.append(upper ? "0X" : "0x"); if (f.contains(Flags.ZERO_PAD)) for (int i = 0; i < width - s.length() - 2; i++) sb.append('0'); int idx = s.indexOf('p'); va = s.substring(0, idx).toCharArray(); if (upper) { String tmp = new String(va); // don't localize hex tmp = tmp.toUpperCase(Locale.US); va = tmp.toCharArray(); } sb.append(prec != 0 ? addZeros(va, prec) : va); sb.append(upper ? 'P' : 'p'); sb.append(s.substring(idx+1)); } } // Add zeros to the requested precision. private char[] addZeros(char[] v, int prec) { // Look for the dot. If we don't find one, the we'll need to add // it before we add the zeros. int i; for (i = 0; i < v.length; i++) { if (v[i] == '.') break; } boolean needDot = false; if (i == v.length) { needDot = true; } // Determine existing precision. int outPrec = v.length - i - (needDot ? 0 : 1); assert (outPrec <= prec); if (outPrec == prec) return v; // Create new array with existing contents. char[] tmp = new char[v.length + prec - outPrec + (needDot ? 1 : 0)]; System.arraycopy(v, 0, tmp, 0, v.length); // Add dot if previously determined to be necessary. int start = v.length; if (needDot) { tmp[v.length] = '.'; start++; } // Add zeros. for (int j = start; j < tmp.length; j++) tmp[j] = '0'; return tmp; } // Method assumes that d > 0. private String hexDouble(double d, int prec) { // Let Double.toHexString handle simple cases if(!Double.isFinite(d) || d == 0.0 || prec == 0 || prec >= 13) // remove "0x" return Double.toHexString(d).substring(2); else { assert(prec >= 1 && prec <= 12); int exponent = Math.getExponent(d); boolean subnormal = (exponent == DoubleConsts.MIN_EXPONENT - 1); // If this is subnormal input so normalize (could be faster to // do as integer operation). if (subnormal) { scaleUp = Math.scalb(1.0, 54); d *= scaleUp; // Calculate the exponent. This is not just exponent + 54 // since the former is not the normalized exponent. exponent = Math.getExponent(d); assert exponent >= DoubleConsts.MIN_EXPONENT && exponent <= DoubleConsts.MAX_EXPONENT: exponent; } int precision = 1 + prec*4; int shiftDistance = DoubleConsts.SIGNIFICAND_WIDTH - precision; assert(shiftDistance >= 1 && shiftDistance < DoubleConsts.SIGNIFICAND_WIDTH); long doppel = Double.doubleToLongBits(d); // Deterime the number of bits to keep. long newSignif = (doppel & (DoubleConsts.EXP_BIT_MASK | DoubleConsts.SIGNIF_BIT_MASK)) >> shiftDistance; // Bits to round away. long roundingBits = doppel & ~(~0L << shiftDistance); // To decide how to round, look at the low-order bit of the // working significand, the highest order discarded bit (the // round bit) and whether any of the lower order discarded bits // are nonzero (the sticky bit). boolean leastZero = (newSignif & 0x1L) == 0L; boolean round = ((1L << (shiftDistance - 1) ) & roundingBits) != 0L; boolean sticky = shiftDistance > 1 && (~(1L<< (shiftDistance - 1)) & roundingBits) != 0; if((leastZero && round && sticky) || (!leastZero && round)) { newSignif++; } long signBit = doppel & DoubleConsts.SIGN_BIT_MASK; newSignif = signBit | (newSignif << shiftDistance); double result = Double.longBitsToDouble(newSignif); if (Double.isInfinite(result) ) { // Infinite result generated by rounding return "1.0p1024"; } else { String res = Double.toHexString(result).substring(2); if (!subnormal) return res; else { // Create a normalized subnormal string. int idx = res.indexOf('p'); if (idx == -1) { // No 'p' character in hex string. assert false; return null; } else { // Get exponent and append at the end. String exp = res.substring(idx + 1); int iexp = Integer.parseInt(exp) -54; return res.substring(0, idx) + "p" + Integer.toString(iexp); } } } } } private void print(BigDecimal value, Locale l) throws IOException { if (c == Conversion.HEXADECIMAL_FLOAT) failConversion(c, value); StringBuilder sb = new StringBuilder(); boolean neg = value.signum() == -1; BigDecimal v = value.abs(); // leading sign indicator leadingSign(sb, neg); // the value print(sb, v, l, f, c, precision, neg); // trailing sign indicator trailingSign(sb, neg); // justify based on width a.append(justify(sb.toString())); } // value > 0 private void print(StringBuilder sb, BigDecimal value, Locale l, Flags f, char c, int precision, boolean neg) throws IOException { if (c == Conversion.SCIENTIFIC) { // Create a new BigDecimal with the desired precision. int prec = (precision == -1 ? 6 : precision); int scale = value.scale(); int origPrec = value.precision(); int nzeros = 0; int compPrec; if (prec > origPrec - 1) { compPrec = origPrec; nzeros = prec - (origPrec - 1); } else { compPrec = prec + 1; } MathContext mc = new MathContext(compPrec); BigDecimal v = new BigDecimal(value.unscaledValue(), scale, mc); BigDecimalLayout bdl = new BigDecimalLayout(v.unscaledValue(), v.scale(), BigDecimalLayoutForm.SCIENTIFIC); char[] mant = bdl.mantissa(); // Add a decimal point if necessary. The mantissa may not // contain a decimal point if the scale is zero (the internal // representation has no fractional part) or the original // precision is one. Append a decimal point if '#' is set or if // we require zero padding to get to the requested precision. if ((origPrec == 1 || !bdl.hasDot()) && (nzeros > 0 || (f.contains(Flags.ALTERNATE)))) mant = addDot(mant); // Add trailing zeros in the case precision is greater than // the number of available digits after the decimal separator. mant = trailingZeros(mant, nzeros); char[] exp = bdl.exponent(); int newW = width; if (width != -1) newW = adjustWidth(width - exp.length - 1, f, neg); localizedMagnitude(sb, mant, f, newW, l); sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e'); Flags flags = f.dup().remove(Flags.GROUP); char sign = exp[0]; assert(sign == '+' || sign == '-'); sb.append(exp[0]); char[] tmp = new char[exp.length - 1]; System.arraycopy(exp, 1, tmp, 0, exp.length - 1); sb.append(localizedMagnitude(null, tmp, flags, -1, l)); } else if (c == Conversion.DECIMAL_FLOAT) { // Create a new BigDecimal with the desired precision. int prec = (precision == -1 ? 6 : precision); int scale = value.scale(); if (scale > prec) { // more "scale" digits than the requested "precision" int compPrec = value.precision(); if (compPrec <= scale) { // case of 0.xxxxxx value = value.setScale(prec, RoundingMode.HALF_UP); } else { compPrec -= (scale - prec); value = new BigDecimal(value.unscaledValue(), scale, new MathContext(compPrec)); } } BigDecimalLayout bdl = new BigDecimalLayout( value.unscaledValue(), value.scale(), BigDecimalLayoutForm.DECIMAL_FLOAT); char mant[] = bdl.mantissa(); int nzeros = (bdl.scale() < prec ? prec - bdl.scale() : 0); // Add a decimal point if necessary. The mantissa may not // contain a decimal point if the scale is zero (the internal // representation has no fractional part). Append a decimal // point if '#' is set or we require zero padding to get to the // requested precision. if (bdl.scale() == 0 && (f.contains(Flags.ALTERNATE) || nzeros > 0)) mant = addDot(bdl.mantissa()); // Add trailing zeros if the precision is greater than the // number of available digits after the decimal separator. mant = trailingZeros(mant, nzeros); localizedMagnitude(sb, mant, f, adjustWidth(width, f, neg), l); } else if (c == Conversion.GENERAL) { int prec = precision; if (precision == -1) prec = 6; else if (precision == 0) prec = 1; BigDecimal tenToTheNegFour = BigDecimal.valueOf(1, 4); BigDecimal tenToThePrec = BigDecimal.valueOf(1, -prec); if ((value.equals(BigDecimal.ZERO)) || ((value.compareTo(tenToTheNegFour) != -1) && (value.compareTo(tenToThePrec) == -1))) { int e = - value.scale() + (value.unscaledValue().toString().length() - 1); // xxx.yyy // g precision (# sig digits) = #x + #y // f precision = #y // exponent = #x - 1 // => f precision = g precision - exponent - 1 // 0.000zzz // g precision (# sig digits) = #z // f precision = #0 (after '.') + #z // exponent = - #0 (after '.') - 1 // => f precision = g precision - exponent - 1 prec = prec - e - 1; print(sb, value, l, f, Conversion.DECIMAL_FLOAT, prec, neg); } else { print(sb, value, l, f, Conversion.SCIENTIFIC, prec - 1, neg); } } else if (c == Conversion.HEXADECIMAL_FLOAT) { // This conversion isn't supported. The error should be // reported earlier. assert false; } } private class BigDecimalLayout { private StringBuilder mant; private StringBuilder exp; private boolean dot = false; private int scale; public BigDecimalLayout(BigInteger intVal, int scale, BigDecimalLayoutForm form) { layout(intVal, scale, form); } public boolean hasDot() { return dot; } public int scale() { return scale; } // char[] with canonical string representation public char[] layoutChars() { StringBuilder sb = new StringBuilder(mant); if (exp != null) { sb.append('E'); sb.append(exp); } return toCharArray(sb); } public char[] mantissa() { return toCharArray(mant); } // The exponent will be formatted as a sign ('+' or '-') followed // by the exponent zero-padded to include at least two digits. public char[] exponent() { return toCharArray(exp); } private char[] toCharArray(StringBuilder sb) { if (sb == null) return null; char[] result = new char[sb.length()]; sb.getChars(0, result.length, result, 0); return result; } private void layout(BigInteger intVal, int scale, BigDecimalLayoutForm form) { char coeff[] = intVal.toString().toCharArray(); this.scale = scale; // Construct a buffer, with sufficient capacity for all cases. // If E-notation is needed, length will be: +1 if negative, +1 // if '.' needed, +2 for "E+", + up to 10 for adjusted // exponent. Otherwise it could have +1 if negative, plus // leading "0.00000" mant = new StringBuilder(coeff.length + 14); if (scale == 0) { int len = coeff.length; if (len > 1) { mant.append(coeff[0]); if (form == BigDecimalLayoutForm.SCIENTIFIC) { mant.append('.'); dot = true; mant.append(coeff, 1, len - 1); exp = new StringBuilder("+"); if (len < 10) exp.append("0").append(len - 1); else exp.append(len - 1); } else { mant.append(coeff, 1, len - 1); } } else { mant.append(coeff); if (form == BigDecimalLayoutForm.SCIENTIFIC) exp = new StringBuilder("+00"); } return; } long adjusted = -(long) scale + (coeff.length - 1); if (form == BigDecimalLayoutForm.DECIMAL_FLOAT) { // count of padding zeros int pad = scale - coeff.length; if (pad >= 0) { // 0.xxx form mant.append("0."); dot = true; for (; pad > 0 ; pad--) mant.append('0'); mant.append(coeff); } else { if (-pad < coeff.length) { // xx.xx form mant.append(coeff, 0, -pad); mant.append('.'); dot = true; mant.append(coeff, -pad, scale); } else { // xx form mant.append(coeff, 0, coeff.length); for (int i = 0; i < -scale; i++) mant.append('0'); this.scale = 0; } } } else { // x.xxx form mant.append(coeff[0]); if (coeff.length > 1) { mant.append('.'); dot = true; mant.append(coeff, 1, coeff.length-1); } exp = new StringBuilder(); if (adjusted != 0) { long abs = Math.abs(adjusted); // require sign exp.append(adjusted < 0 ? '-' : '+'); if (abs < 10) exp.append('0'); exp.append(abs); } else { exp.append("+00"); } } } } private int adjustWidth(int width, Flags f, boolean neg) { int newW = width; if (newW != -1 && neg && f.contains(Flags.PARENTHESES)) newW--; return newW; } // Add a '.' to th mantissa if required private char[] addDot(char[] mant) { char[] tmp = mant; tmp = new char[mant.length + 1]; System.arraycopy(mant, 0, tmp, 0, mant.length); tmp[tmp.length - 1] = '.'; return tmp; } // Add trailing zeros in the case precision is greater than the number // of available digits after the decimal separator. private char[] trailingZeros(char[] mant, int nzeros) { char[] tmp = mant; if (nzeros > 0) { tmp = new char[mant.length + nzeros]; System.arraycopy(mant, 0, tmp, 0, mant.length); for (int i = mant.length; i < tmp.length; i++) tmp[i] = '0'; } return tmp; } private void print(Calendar t, char c, Locale l) throws IOException { StringBuilder sb = new StringBuilder(); print(sb, t, c, l); // justify based on width String s = justify(sb.toString()); if (f.contains(Flags.UPPERCASE)) s = s.toUpperCase(); a.append(s); } private Appendable print(StringBuilder sb, Calendar t, char c, Locale l) throws IOException { if (sb == null) sb = new StringBuilder(); switch (c) { case DateTime.HOUR_OF_DAY_0: // 'H' (00 - 23) case DateTime.HOUR_0: // 'I' (01 - 12) case DateTime.HOUR_OF_DAY: // 'k' (0 - 23) -- like H case DateTime.HOUR: { // 'l' (1 - 12) -- like I int i = t.get(Calendar.HOUR_OF_DAY); if (c == DateTime.HOUR_0 || c == DateTime.HOUR) i = (i == 0 || i == 12 ? 12 : i % 12); Flags flags = (c == DateTime.HOUR_OF_DAY_0 || c == DateTime.HOUR_0 ? Flags.ZERO_PAD : Flags.NONE); sb.append(localizedMagnitude(null, i, flags, 2, l)); break; } case DateTime.MINUTE: { // 'M' (00 - 59) int i = t.get(Calendar.MINUTE); Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, 2, l)); break; } case DateTime.NANOSECOND: { // 'N' (000000000 - 999999999) int i = t.get(Calendar.MILLISECOND) * 1000000; Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, 9, l)); break; } case DateTime.MILLISECOND: { // 'L' (000 - 999) int i = t.get(Calendar.MILLISECOND); Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, 3, l)); break; } case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?) long i = t.getTimeInMillis(); Flags flags = Flags.NONE; sb.append(localizedMagnitude(null, i, flags, width, l)); break; } case DateTime.AM_PM: { // 'p' (am or pm) // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper String[] ampm = { "AM", "PM" }; if (l != null && l != Locale.US) { DateFormatSymbols dfs = DateFormatSymbols.getInstance(l); ampm = dfs.getAmPmStrings(); } String s = ampm[t.get(Calendar.AM_PM)]; sb.append(s.toLowerCase(l != null ? l : Locale.US)); break; } case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?) long i = t.getTimeInMillis() / 1000; Flags flags = Flags.NONE; sb.append(localizedMagnitude(null, i, flags, width, l)); break; } case DateTime.SECOND: { // 'S' (00 - 60 - leap second) int i = t.get(Calendar.SECOND); Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, 2, l)); break; } case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus? int i = t.get(Calendar.ZONE_OFFSET) + t.get(Calendar.DST_OFFSET); boolean neg = i < 0; sb.append(neg ? '-' : '+'); if (neg) i = -i; int min = i / 60000; // combine minute and hour into a single integer int offset = (min / 60) * 100 + (min % 60); Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, offset, flags, 4, l)); break; } case DateTime.ZONE: { // 'Z' (symbol) TimeZone tz = t.getTimeZone(); sb.append(tz.getDisplayName((t.get(Calendar.DST_OFFSET) != 0), TimeZone.SHORT, (l == null) ? Locale.US : l)); break; } // Date case DateTime.NAME_OF_DAY_ABBREV: // 'a' case DateTime.NAME_OF_DAY: { // 'A' int i = t.get(Calendar.DAY_OF_WEEK); Locale lt = ((l == null) ? Locale.US : l); DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt); if (c == DateTime.NAME_OF_DAY) sb.append(dfs.getWeekdays()[i]); else sb.append(dfs.getShortWeekdays()[i]); break; } case DateTime.NAME_OF_MONTH_ABBREV: // 'b' case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b case DateTime.NAME_OF_MONTH: { // 'B' int i = t.get(Calendar.MONTH); Locale lt = ((l == null) ? Locale.US : l); DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt); if (c == DateTime.NAME_OF_MONTH) sb.append(dfs.getMonths()[i]); else sb.append(dfs.getShortMonths()[i]); break; } case DateTime.CENTURY: // 'C' (00 - 99) case DateTime.YEAR_2: // 'y' (00 - 99) case DateTime.YEAR_4: { // 'Y' (0000 - 9999) int i = t.get(Calendar.YEAR); int size = 2; switch (c) { case DateTime.CENTURY: i /= 100; break; case DateTime.YEAR_2: i %= 100; break; case DateTime.YEAR_4: size = 4; break; } Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, size, l)); break; } case DateTime.DAY_OF_MONTH_0: // 'd' (01 - 31) case DateTime.DAY_OF_MONTH: { // 'e' (1 - 31) -- like d int i = t.get(Calendar.DATE); Flags flags = (c == DateTime.DAY_OF_MONTH_0 ? Flags.ZERO_PAD : Flags.NONE); sb.append(localizedMagnitude(null, i, flags, 2, l)); break; } case DateTime.DAY_OF_YEAR: { // 'j' (001 - 366) int i = t.get(Calendar.DAY_OF_YEAR); Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, 3, l)); break; } case DateTime.MONTH: { // 'm' (01 - 12) int i = t.get(Calendar.MONTH) + 1; Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, 2, l)); break; } // Composites case DateTime.TIME: // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS) case DateTime.TIME_24_HOUR: { // 'R' (hh:mm same as %H:%M) char sep = ':'; print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep); print(sb, t, DateTime.MINUTE, l); if (c == DateTime.TIME) { sb.append(sep); print(sb, t, DateTime.SECOND, l); } break; } case DateTime.TIME_12_HOUR: { // 'r' (hh:mm:ss [AP]M) char sep = ':'; print(sb, t, DateTime.HOUR_0, l).append(sep); print(sb, t, DateTime.MINUTE, l).append(sep); print(sb, t, DateTime.SECOND, l).append(' '); // this may be in wrong place for some locales StringBuilder tsb = new StringBuilder(); print(tsb, t, DateTime.AM_PM, l); sb.append(tsb.toString().toUpperCase(l != null ? l : Locale.US)); break; } case DateTime.DATE_TIME: { // 'c' (Sat Nov 04 12:02:33 EST 1999) char sep = ' '; print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep); print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep); print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep); print(sb, t, DateTime.TIME, l).append(sep); print(sb, t, DateTime.ZONE, l).append(sep); print(sb, t, DateTime.YEAR_4, l); break; } case DateTime.DATE: { // 'D' (mm/dd/yy) char sep = '/'; print(sb, t, DateTime.MONTH, l).append(sep); print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep); print(sb, t, DateTime.YEAR_2, l); break; } case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d) char sep = '-'; print(sb, t, DateTime.YEAR_4, l).append(sep); print(sb, t, DateTime.MONTH, l).append(sep); print(sb, t, DateTime.DAY_OF_MONTH_0, l); break; } default: assert false; } return sb; } private void print(TemporalAccessor t, char c, Locale l) throws IOException { StringBuilder sb = new StringBuilder(); print(sb, t, c, l); // justify based on width String s = justify(sb.toString()); if (f.contains(Flags.UPPERCASE)) s = s.toUpperCase(); a.append(s); } private Appendable print(StringBuilder sb, TemporalAccessor t, char c, Locale l) throws IOException { if (sb == null) sb = new StringBuilder(); try { switch (c) { case DateTime.HOUR_OF_DAY_0: { // 'H' (00 - 23) int i = t.get(ChronoField.HOUR_OF_DAY); sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l)); break; } case DateTime.HOUR_OF_DAY: { // 'k' (0 - 23) -- like H int i = t.get(ChronoField.HOUR_OF_DAY); sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l)); break; } case DateTime.HOUR_0: { // 'I' (01 - 12) int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM); sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l)); break; } case DateTime.HOUR: { // 'l' (1 - 12) -- like I int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM); sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l)); break; } case DateTime.MINUTE: { // 'M' (00 - 59) int i = t.get(ChronoField.MINUTE_OF_HOUR); Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, 2, l)); break; } case DateTime.NANOSECOND: { // 'N' (000000000 - 999999999) int i = t.get(ChronoField.MILLI_OF_SECOND) * 1000000; Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, 9, l)); break; } case DateTime.MILLISECOND: { // 'L' (000 - 999) int i = t.get(ChronoField.MILLI_OF_SECOND); Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, 3, l)); break; } case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?) long i = t.getLong(ChronoField.INSTANT_SECONDS) * 1000L + t.getLong(ChronoField.MILLI_OF_SECOND); Flags flags = Flags.NONE; sb.append(localizedMagnitude(null, i, flags, width, l)); break; } case DateTime.AM_PM: { // 'p' (am or pm) // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper String[] ampm = { "AM", "PM" }; if (l != null && l != Locale.US) { DateFormatSymbols dfs = DateFormatSymbols.getInstance(l); ampm = dfs.getAmPmStrings(); } String s = ampm[t.get(ChronoField.AMPM_OF_DAY)]; sb.append(s.toLowerCase(l != null ? l : Locale.US)); break; } case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?) long i = t.getLong(ChronoField.INSTANT_SECONDS); Flags flags = Flags.NONE; sb.append(localizedMagnitude(null, i, flags, width, l)); break; } case DateTime.SECOND: { // 'S' (00 - 60 - leap second) int i = t.get(ChronoField.SECOND_OF_MINUTE); Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, 2, l)); break; } case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus? int i = t.get(ChronoField.OFFSET_SECONDS); boolean neg = i < 0; sb.append(neg ? '-' : '+'); if (neg) i = -i; int min = i / 60; // combine minute and hour into a single integer int offset = (min / 60) * 100 + (min % 60); Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, offset, flags, 4, l)); break; } case DateTime.ZONE: { // 'Z' (symbol) ZoneId zid = t.query(TemporalQueries.zone()); if (zid == null) { throw new IllegalFormatConversionException(c, t.getClass()); } if (!(zid instanceof ZoneOffset) && t.isSupported(ChronoField.INSTANT_SECONDS)) { Instant instant = Instant.from(t); sb.append(TimeZone.getTimeZone(zid.getId()) .getDisplayName(zid.getRules().isDaylightSavings(instant), TimeZone.SHORT, (l == null) ? Locale.US : l)); break; } sb.append(zid.getId()); break; } // Date case DateTime.NAME_OF_DAY_ABBREV: // 'a' case DateTime.NAME_OF_DAY: { // 'A' int i = t.get(ChronoField.DAY_OF_WEEK) % 7 + 1; Locale lt = ((l == null) ? Locale.US : l); DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt); if (c == DateTime.NAME_OF_DAY) sb.append(dfs.getWeekdays()[i]); else sb.append(dfs.getShortWeekdays()[i]); break; } case DateTime.NAME_OF_MONTH_ABBREV: // 'b' case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b case DateTime.NAME_OF_MONTH: { // 'B' int i = t.get(ChronoField.MONTH_OF_YEAR) - 1; Locale lt = ((l == null) ? Locale.US : l); DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt); if (c == DateTime.NAME_OF_MONTH) sb.append(dfs.getMonths()[i]); else sb.append(dfs.getShortMonths()[i]); break; } case DateTime.CENTURY: // 'C' (00 - 99) case DateTime.YEAR_2: // 'y' (00 - 99) case DateTime.YEAR_4: { // 'Y' (0000 - 9999) int i = t.get(ChronoField.YEAR_OF_ERA); int size = 2; switch (c) { case DateTime.CENTURY: i /= 100; break; case DateTime.YEAR_2: i %= 100; break; case DateTime.YEAR_4: size = 4; break; } Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, size, l)); break; } case DateTime.DAY_OF_MONTH_0: // 'd' (01 - 31) case DateTime.DAY_OF_MONTH: { // 'e' (1 - 31) -- like d int i = t.get(ChronoField.DAY_OF_MONTH); Flags flags = (c == DateTime.DAY_OF_MONTH_0 ? Flags.ZERO_PAD : Flags.NONE); sb.append(localizedMagnitude(null, i, flags, 2, l)); break; } case DateTime.DAY_OF_YEAR: { // 'j' (001 - 366) int i = t.get(ChronoField.DAY_OF_YEAR); Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, 3, l)); break; } case DateTime.MONTH: { // 'm' (01 - 12) int i = t.get(ChronoField.MONTH_OF_YEAR); Flags flags = Flags.ZERO_PAD; sb.append(localizedMagnitude(null, i, flags, 2, l)); break; } // Composites case DateTime.TIME: // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS) case DateTime.TIME_24_HOUR: { // 'R' (hh:mm same as %H:%M) char sep = ':'; print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep); print(sb, t, DateTime.MINUTE, l); if (c == DateTime.TIME) { sb.append(sep); print(sb, t, DateTime.SECOND, l); } break; } case DateTime.TIME_12_HOUR: { // 'r' (hh:mm:ss [AP]M) char sep = ':'; print(sb, t, DateTime.HOUR_0, l).append(sep); print(sb, t, DateTime.MINUTE, l).append(sep); print(sb, t, DateTime.SECOND, l).append(' '); // this may be in wrong place for some locales StringBuilder tsb = new StringBuilder(); print(tsb, t, DateTime.AM_PM, l); sb.append(tsb.toString().toUpperCase(l != null ? l : Locale.US)); break; } case DateTime.DATE_TIME: { // 'c' (Sat Nov 04 12:02:33 EST 1999) char sep = ' '; print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep); print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep); print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep); print(sb, t, DateTime.TIME, l).append(sep); print(sb, t, DateTime.ZONE, l).append(sep); print(sb, t, DateTime.YEAR_4, l); break; } case DateTime.DATE: { // 'D' (mm/dd/yy) char sep = '/'; print(sb, t, DateTime.MONTH, l).append(sep); print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep); print(sb, t, DateTime.YEAR_2, l); break; } case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d) char sep = '-'; print(sb, t, DateTime.YEAR_4, l).append(sep); print(sb, t, DateTime.MONTH, l).append(sep); print(sb, t, DateTime.DAY_OF_MONTH_0, l); break; } default: assert false; } } catch (DateTimeException x) { throw new IllegalFormatConversionException(c, t.getClass()); } return sb; } // -- Methods to support throwing exceptions -- private void failMismatch(Flags f, char c) { String fs = f.toString(); throw new FormatFlagsConversionMismatchException(fs, c); } private void failConversion(char c, Object arg) { throw new IllegalFormatConversionException(c, arg.getClass()); } private char getZero(Locale l) { if ((l != null) && !l.equals(locale())) { DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l); return dfs.getZeroDigit(); } return zero; } private StringBuilder localizedMagnitude(StringBuilder sb, long value, Flags f, int width, Locale l) { char[] va = Long.toString(value, 10).toCharArray(); return localizedMagnitude(sb, va, f, width, l); } private StringBuilder localizedMagnitude(StringBuilder sb, char[] value, Flags f, int width, Locale l) { if (sb == null) sb = new StringBuilder(); int begin = sb.length(); char zero = getZero(l); // determine localized grouping separator and size char grpSep = '\0'; int grpSize = -1; char decSep = '\0'; int len = value.length; int dot = len; for (int j = 0; j < len; j++) { if (value[j] == '.') { dot = j; break; } } if (dot < len) { if (l == null || l.equals(Locale.US)) { decSep = '.'; } else { DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l); decSep = dfs.getDecimalSeparator(); } } if (f.contains(Flags.GROUP)) { if (l == null || l.equals(Locale.US)) { grpSep = ','; grpSize = 3; } else { DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l); grpSep = dfs.getGroupingSeparator(); DecimalFormat df = (DecimalFormat) NumberFormat.getIntegerInstance(l); grpSize = df.getGroupingSize(); } } // localize the digits inserting group separators as necessary for (int j = 0; j < len; j++) { if (j == dot) { sb.append(decSep); // no more group separators after the decimal separator grpSep = '\0'; continue; } char c = value[j]; sb.append((char) ((c - '0') + zero)); if (grpSep != '\0' && j != dot - 1 && ((dot - j) % grpSize == 1)) sb.append(grpSep); } // apply zero padding len = sb.length(); if (width != -1 && f.contains(Flags.ZERO_PAD)) for (int k = 0; k < width - len; k++) sb.insert(begin, zero); return sb; } } private static class Flags { private int flags; static final Flags NONE = new Flags(0); // '' // duplicate declarations from Formattable.java static final Flags LEFT_JUSTIFY = new Flags(1<<0); // '-' static final Flags UPPERCASE = new Flags(1<<1); // '^' static final Flags ALTERNATE = new Flags(1<<2); // '#' // numerics static final Flags PLUS = new Flags(1<<3); // '+' static final Flags LEADING_SPACE = new Flags(1<<4); // ' ' static final Flags ZERO_PAD = new Flags(1<<5); // '0' static final Flags GROUP = new Flags(1<<6); // ',' static final Flags PARENTHESES = new Flags(1<<7); // '(' // indexing static final Flags PREVIOUS = new Flags(1<<8); // '<' private Flags(int f) { flags = f; } public int valueOf() { return flags; } public boolean contains(Flags f) { return (flags & f.valueOf()) == f.valueOf(); } public Flags dup() { return new Flags(flags); } private Flags add(Flags f) { flags |= f.valueOf(); return this; } public Flags remove(Flags f) { flags &= ~f.valueOf(); return this; } public static Flags parse(String s) { char[] ca = s.toCharArray(); Flags f = new Flags(0); for (int i = 0; i < ca.length; i++) { Flags v = parse(ca[i]); if (f.contains(v)) throw new DuplicateFormatFlagsException(v.toString()); f.add(v); } return f; } // parse those flags which may be provided by users private static Flags parse(char c) { switch (c) { case '-': return LEFT_JUSTIFY; case '#': return ALTERNATE; case '+': return PLUS; case ' ': return LEADING_SPACE; case '0': return ZERO_PAD; case ',': return GROUP; case '(': return PARENTHESES; case '<': return PREVIOUS; default: throw new UnknownFormatFlagsException(String.valueOf(c)); } } // Returns a string representation of the current {@code Flags}. public static String toString(Flags f) { return f.toString(); } public String toString() { StringBuilder sb = new StringBuilder(); if (contains(LEFT_JUSTIFY)) sb.append('-'); if (contains(UPPERCASE)) sb.append('^'); if (contains(ALTERNATE)) sb.append('#'); if (contains(PLUS)) sb.append('+'); if (contains(LEADING_SPACE)) sb.append(' '); if (contains(ZERO_PAD)) sb.append('0'); if (contains(GROUP)) sb.append(','); if (contains(PARENTHESES)) sb.append('('); if (contains(PREVIOUS)) sb.append('<'); return sb.toString(); } } private static class Conversion { // Byte, Short, Integer, Long, BigInteger // (and associated primitives due to autoboxing) static final char DECIMAL_INTEGER = 'd'; static final char OCTAL_INTEGER = 'o'; static final char HEXADECIMAL_INTEGER = 'x'; static final char HEXADECIMAL_INTEGER_UPPER = 'X'; // Float, Double, BigDecimal // (and associated primitives due to autoboxing) static final char SCIENTIFIC = 'e'; static final char SCIENTIFIC_UPPER = 'E'; static final char GENERAL = 'g'; static final char GENERAL_UPPER = 'G'; static final char DECIMAL_FLOAT = 'f'; static final char HEXADECIMAL_FLOAT = 'a'; static final char HEXADECIMAL_FLOAT_UPPER = 'A'; // Character, Byte, Short, Integer // (and associated primitives due to autoboxing) static final char CHARACTER = 'c'; static final char CHARACTER_UPPER = 'C'; // java.util.Date, java.util.Calendar, long static final char DATE_TIME = 't'; static final char DATE_TIME_UPPER = 'T'; // if (arg.TYPE != boolean) return boolean // if (arg != null) return true; else return false; static final char BOOLEAN = 'b'; static final char BOOLEAN_UPPER = 'B'; // if (arg instanceof Formattable) arg.formatTo() // else arg.toString(); static final char STRING = 's'; static final char STRING_UPPER = 'S'; // arg.hashCode() static final char HASHCODE = 'h'; static final char HASHCODE_UPPER = 'H'; static final char LINE_SEPARATOR = 'n'; static final char PERCENT_SIGN = '%'; static boolean isValid(char c) { return (isGeneral(c) || isInteger(c) || isFloat(c) || isText(c) || c == 't' || isCharacter(c)); } // Returns true iff the Conversion is applicable to all objects. static boolean isGeneral(char c) { switch (c) { case BOOLEAN: case BOOLEAN_UPPER: case STRING: case STRING_UPPER: case HASHCODE: case HASHCODE_UPPER: return true; default: return false; } } // Returns true iff the Conversion is applicable to character. static boolean isCharacter(char c) { switch (c) { case CHARACTER: case CHARACTER_UPPER: return true; default: return false; } } // Returns true iff the Conversion is an integer type. static boolean isInteger(char c) { switch (c) { case DECIMAL_INTEGER: case OCTAL_INTEGER: case HEXADECIMAL_INTEGER: case HEXADECIMAL_INTEGER_UPPER: return true; default: return false; } } // Returns true iff the Conversion is a floating-point type. static boolean isFloat(char c) { switch (c) { case SCIENTIFIC: case SCIENTIFIC_UPPER: case GENERAL: case GENERAL_UPPER: case DECIMAL_FLOAT: case HEXADECIMAL_FLOAT: case HEXADECIMAL_FLOAT_UPPER: return true; default: return false; } } // Returns true iff the Conversion does not require an argument static boolean isText(char c) { switch (c) { case LINE_SEPARATOR: case PERCENT_SIGN: return true; default: return false; } } } private static class DateTime { static final char HOUR_OF_DAY_0 = 'H'; // (00 - 23) static final char HOUR_0 = 'I'; // (01 - 12) static final char HOUR_OF_DAY = 'k'; // (0 - 23) -- like H static final char HOUR = 'l'; // (1 - 12) -- like I static final char MINUTE = 'M'; // (00 - 59) static final char NANOSECOND = 'N'; // (000000000 - 999999999) static final char MILLISECOND = 'L'; // jdk, not in gnu (000 - 999) static final char MILLISECOND_SINCE_EPOCH = 'Q'; // (0 - 99...?) static final char AM_PM = 'p'; // (am or pm) static final char SECONDS_SINCE_EPOCH = 's'; // (0 - 99...?) static final char SECOND = 'S'; // (00 - 60 - leap second) static final char TIME = 'T'; // (24 hour hh:mm:ss) static final char ZONE_NUMERIC = 'z'; // (-1200 - +1200) - ls minus? static final char ZONE = 'Z'; // (symbol) // Date static final char NAME_OF_DAY_ABBREV = 'a'; // 'a' static final char NAME_OF_DAY = 'A'; // 'A' static final char NAME_OF_MONTH_ABBREV = 'b'; // 'b' static final char NAME_OF_MONTH = 'B'; // 'B' static final char CENTURY = 'C'; // (00 - 99) static final char DAY_OF_MONTH_0 = 'd'; // (01 - 31) static final char DAY_OF_MONTH = 'e'; // (1 - 31) -- like d // * static final char ISO_WEEK_OF_YEAR_2 = 'g'; // cross %y %V // * static final char ISO_WEEK_OF_YEAR_4 = 'G'; // cross %Y %V static final char NAME_OF_MONTH_ABBREV_X = 'h'; // -- same b static final char DAY_OF_YEAR = 'j'; // (001 - 366) static final char MONTH = 'm'; // (01 - 12) // * static final char DAY_OF_WEEK_1 = 'u'; // (1 - 7) Monday // * static final char WEEK_OF_YEAR_SUNDAY = 'U'; // (0 - 53) Sunday+ // * static final char WEEK_OF_YEAR_MONDAY_01 = 'V'; // (01 - 53) Monday+ // * static final char DAY_OF_WEEK_0 = 'w'; // (0 - 6) Sunday // * static final char WEEK_OF_YEAR_MONDAY = 'W'; // (00 - 53) Monday static final char YEAR_2 = 'y'; // (00 - 99) static final char YEAR_4 = 'Y'; // (0000 - 9999) // Composites static final char TIME_12_HOUR = 'r'; // (hh:mm:ss [AP]M) static final char TIME_24_HOUR = 'R'; // (hh:mm same as %H:%M) // * static final char LOCALE_TIME = 'X'; // (%H:%M:%S) - parse format? static final char DATE_TIME = 'c'; // (Sat Nov 04 12:02:33 EST 1999) static final char DATE = 'D'; // (mm/dd/yy) static final char ISO_STANDARD_DATE = 'F'; // (%Y-%m-%d) // * static final char LOCALE_DATE = 'x'; // (mm/dd/yy) static boolean isValid(char c) { switch (c) { case HOUR_OF_DAY_0: case HOUR_0: case HOUR_OF_DAY: case HOUR: case MINUTE: case NANOSECOND: case MILLISECOND: case MILLISECOND_SINCE_EPOCH: case AM_PM: case SECONDS_SINCE_EPOCH: case SECOND: case TIME: case ZONE_NUMERIC: case ZONE: // Date case NAME_OF_DAY_ABBREV: case NAME_OF_DAY: case NAME_OF_MONTH_ABBREV: case NAME_OF_MONTH: case CENTURY: case DAY_OF_MONTH_0: case DAY_OF_MONTH: // * case ISO_WEEK_OF_YEAR_2: // * case ISO_WEEK_OF_YEAR_4: case NAME_OF_MONTH_ABBREV_X: case DAY_OF_YEAR: case MONTH: // * case DAY_OF_WEEK_1: // * case WEEK_OF_YEAR_SUNDAY: // * case WEEK_OF_YEAR_MONDAY_01: // * case DAY_OF_WEEK_0: // * case WEEK_OF_YEAR_MONDAY: case YEAR_2: case YEAR_4: // Composites case TIME_12_HOUR: case TIME_24_HOUR: // * case LOCALE_TIME: case DATE_TIME: case DATE: case ISO_STANDARD_DATE: // * case LOCALE_DATE: return true; default: return false; } } } public String getNullPrintable() { return null_printable; } public void setNullPrintable(String null_printable) { if(null_printable==null) this.null_printable ="null"; else this.null_printable = null_printable; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy