All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.javascript.jscomp.graph.CheckPathsBetweenNodes Maven / Gradle / Ivy

There is a newer version: 9.0.8
Show newest version
/*
 * Copyright 2008 The Closure Compiler Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.javascript.jscomp.graph;

import com.google.common.base.Predicate;
import com.google.javascript.jscomp.graph.DiGraph.DiGraphEdge;
import com.google.javascript.jscomp.graph.DiGraph.DiGraphNode;

/**
 * See constructor, {@link #CheckPathsBetweenNodes(DiGraph,
 * DiGraphNode, DiGraphNode, Predicate, Predicate)}, for a
 * description of this algorithm.
 *
 * @param  The node type.
 * @param  The edge type.
 */
public final class CheckPathsBetweenNodes {

  private final Predicate nodePredicate;
  private final Predicate> edgePredicate;
  private final boolean inclusive;

  // This algorithm works in two stages. First, the depth-first search (DFS)
  // tree is calculated with A as the root. During when constructing the DFS
  // tree, back edges are recorded. A back edge is a non-tree edge (X -> Y)
  // where X is an descendant of Y in the DFS tree. The second step does a
  // recursive traversal of the graph. Back edges are ignored during the
  // recursive traversal, thus no cycles are encountered. Any recursive branch
  // that encounters B without yet satisfying the predicate represents a path
  // from the entry node to the exit without any nodes that satisfy the
  // predicate.
  //
  // The implementation of discoverBackEdges follows the DFS-Visit algorithm in
  // "Introduction to Algorithms" by Cormen, Leiseron, Rivest, and Stein, 2nd
  // ed., on page 541. The calculation of back edges is described on page 546.

  // A non-tree edge in the DFS that connects a node to one of its ancestors.
  private static final Annotation BACK_EDGE = new Annotation() {};
  private static final Annotation VISITED_EDGE = new Annotation() {};

  // Not yet visited.
  private static final Annotation WHITE = null;
  // Being visited.
  private static final Annotation GRAY = new Annotation() {};
  // Finished visiting.
  private static final Annotation BLACK = new Annotation() {};

  private final DiGraph graph;
  private final DiGraphNode start;
  private final DiGraphNode end;

  /**
   * Given a graph G with nodes A and B, this algorithm determines if all paths from A to B contain
   * at least one node satisfying a given predicate.
   *
   * 

Note that nodePredicate is not necessarily called for all nodes in G nor is edgePredicate * called for all edges in G. * * @param graph Graph G to analyze. * @param a The node A. * @param b The node B. * @param nodePredicate Predicate which at least one node on each path from an A node to B * (inclusive) must match. * @param edgePredicate Edges to consider as part of the graph. Edges in graph that don't match * edgePredicate will be ignored. * @param inclusive Includes node A and B in the test for the node predicate. */ public CheckPathsBetweenNodes( DiGraph graph, DiGraphNode a, DiGraphNode b, Predicate nodePredicate, Predicate> edgePredicate, boolean inclusive) { this.graph = graph; this.start = a; this.end = b; this.nodePredicate = nodePredicate; this.edgePredicate = edgePredicate; this.inclusive = inclusive; } /** * Inclusive check. */ public CheckPathsBetweenNodes(DiGraph graph, DiGraphNode a, DiGraphNode b, Predicate nodePredicate, Predicate> edgePredicate) { this(graph, a, b, nodePredicate, edgePredicate, true); } /** * @return true iff all paths contain at least one node that satisfy the * predicate */ public boolean allPathsSatisfyPredicate() { setUp(); boolean result = checkAllPathsWithoutBackEdges(start, end); tearDown(); return result; } /** * @return true iff some paths contain at least one node that satisfy the * predicate */ public boolean somePathsSatisfyPredicate() { setUp(); boolean result = checkSomePathsWithoutBackEdges(start, end); tearDown(); return result; } private void setUp() { graph.pushNodeAnnotations(); graph.pushEdgeAnnotations(); discoverBackEdges(this.start); } private void tearDown() { graph.popNodeAnnotations(); graph.popEdgeAnnotations(); } private void discoverBackEdges(DiGraphNode u) { u.setAnnotation(GRAY); for (DiGraphEdge e : u.getOutEdges()) { if (ignoreEdge(e)) { continue; } DiGraphNode v = e.getDestination(); if (v.getAnnotation() == WHITE) { discoverBackEdges(v); } else if (v.getAnnotation() == GRAY) { e.setAnnotation(BACK_EDGE); } } u.setAnnotation(BLACK); } private boolean ignoreEdge(DiGraphEdge e) { return !edgePredicate.apply(e); } /** * Verify that all non-looping paths from {@code a} to {@code b} pass * through at least one node where {@code nodePredicate} is true. */ private boolean checkAllPathsWithoutBackEdges(DiGraphNode a, DiGraphNode b) { if (nodePredicate.apply(a.getValue()) && (inclusive || (a != start && a != end))) { return true; } if (a == b) { return false; } for (DiGraphEdge e : a.getOutEdges()) { // Once we visited that edge once, we no longer need to // re-visit it again. if (e.getAnnotation() == VISITED_EDGE) { continue; } e.setAnnotation(VISITED_EDGE); if (ignoreEdge(e)) { continue; } if (e.getAnnotation() == BACK_EDGE) { continue; } DiGraphNode next = e.getDestination(); if (!checkAllPathsWithoutBackEdges(next, b)) { return false; } } return true; } /** * Verify that some non-looping paths from {@code a} to {@code b} pass * through at least one node where {@code nodePredicate} is true. */ private boolean checkSomePathsWithoutBackEdges(DiGraphNode a, DiGraphNode b) { if (nodePredicate.apply(a.getValue()) && (inclusive || (a != start && a != end))) { return true; } if (a == b) { return false; } for (DiGraphEdge e : a.getOutEdges()) { // Once we visited that edge once, we no longer need to // re-visit it again. if (e.getAnnotation() == VISITED_EDGE) { continue; } e.setAnnotation(VISITED_EDGE); if (ignoreEdge(e)) { continue; } if (e.getAnnotation() == BACK_EDGE) { continue; } DiGraphNode next = e.getDestination(); if (checkSomePathsWithoutBackEdges(next, b)) { return true; } } return false; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy