org.spongycastle.crypto.engines.NaccacheSternEngine Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of scprov-jdk15on Show documentation
Show all versions of scprov-jdk15on Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms.
This jar contains JCE provider for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.7.
package org.spongycastle.crypto.engines;
import java.math.BigInteger;
import java.util.Vector;
import org.spongycastle.util.Arrays;
import org.spongycastle.crypto.AsymmetricBlockCipher;
import org.spongycastle.crypto.CipherParameters;
import org.spongycastle.crypto.DataLengthException;
import org.spongycastle.crypto.InvalidCipherTextException;
import org.spongycastle.crypto.params.NaccacheSternKeyParameters;
import org.spongycastle.crypto.params.NaccacheSternPrivateKeyParameters;
import org.spongycastle.crypto.params.ParametersWithRandom;
/**
* NaccacheStern Engine. For details on this cipher, please see
* http://www.gemplus.com/smart/rd/publications/pdf/NS98pkcs.pdf
*/
public class NaccacheSternEngine
implements AsymmetricBlockCipher
{
private boolean forEncryption;
private NaccacheSternKeyParameters key;
private Vector[] lookup = null;
private boolean debug = false;
private static BigInteger ZERO = BigInteger.valueOf(0);
private static BigInteger ONE = BigInteger.valueOf(1);
/**
* Initializes this algorithm. Must be called before all other Functions.
*
* @see org.spongycastle.crypto.AsymmetricBlockCipher#init(boolean,
* org.spongycastle.crypto.CipherParameters)
*/
public void init(boolean forEncryption, CipherParameters param)
{
this.forEncryption = forEncryption;
if (param instanceof ParametersWithRandom)
{
param = ((ParametersWithRandom) param).getParameters();
}
key = (NaccacheSternKeyParameters)param;
// construct lookup table for faster decryption if necessary
if (!this.forEncryption)
{
if (debug)
{
System.out.println("Constructing lookup Array");
}
NaccacheSternPrivateKeyParameters priv = (NaccacheSternPrivateKeyParameters)key;
Vector primes = priv.getSmallPrimes();
lookup = new Vector[primes.size()];
for (int i = 0; i < primes.size(); i++)
{
BigInteger actualPrime = (BigInteger)primes.elementAt(i);
int actualPrimeValue = actualPrime.intValue();
lookup[i] = new Vector();
lookup[i].addElement(ONE);
if (debug)
{
System.out.println("Constructing lookup ArrayList for " + actualPrimeValue);
}
BigInteger accJ = ZERO;
for (int j = 1; j < actualPrimeValue; j++)
{
accJ = accJ.add(priv.getPhi_n());
BigInteger comp = accJ.divide(actualPrime);
lookup[i].addElement(priv.getG().modPow(comp, priv.getModulus()));
}
}
}
}
public void setDebug(boolean debug)
{
this.debug = debug;
}
/**
* Returns the input block size of this algorithm.
*
* @see org.spongycastle.crypto.AsymmetricBlockCipher#getInputBlockSize()
*/
public int getInputBlockSize()
{
if (forEncryption)
{
// We can only encrypt values up to lowerSigmaBound
return (key.getLowerSigmaBound() + 7) / 8 - 1;
}
else
{
// We pad to modulus-size bytes for easier decryption.
return key.getModulus().toByteArray().length;
}
}
/**
* Returns the output block size of this algorithm.
*
* @see org.spongycastle.crypto.AsymmetricBlockCipher#getOutputBlockSize()
*/
public int getOutputBlockSize()
{
if (forEncryption)
{
// encrypted Data is always padded up to modulus size
return key.getModulus().toByteArray().length;
}
else
{
// decrypted Data has upper limit lowerSigmaBound
return (key.getLowerSigmaBound() + 7) / 8 - 1;
}
}
/**
* Process a single Block using the Naccache-Stern algorithm.
*
* @see org.spongycastle.crypto.AsymmetricBlockCipher#processBlock(byte[],
* int, int)
*/
public byte[] processBlock(byte[] in, int inOff, int len) throws InvalidCipherTextException
{
if (key == null)
{
throw new IllegalStateException("NaccacheStern engine not initialised");
}
if (len > (getInputBlockSize() + 1))
{
throw new DataLengthException("input too large for Naccache-Stern cipher.\n");
}
if (!forEncryption)
{
// At decryption make sure that we receive padded data blocks
if (len < getInputBlockSize())
{
throw new InvalidCipherTextException("BlockLength does not match modulus for Naccache-Stern cipher.\n");
}
}
byte[] block;
if (inOff != 0 || len != in.length)
{
block = new byte[len];
System.arraycopy(in, inOff, block, 0, len);
}
else
{
block = in;
}
// transform input into BigInteger
BigInteger input = new BigInteger(1, block);
if (debug)
{
System.out.println("input as BigInteger: " + input);
}
byte[] output;
if (forEncryption)
{
output = encrypt(input);
}
else
{
Vector plain = new Vector();
NaccacheSternPrivateKeyParameters priv = (NaccacheSternPrivateKeyParameters)key;
Vector primes = priv.getSmallPrimes();
// Get Chinese Remainders of CipherText
for (int i = 0; i < primes.size(); i++)
{
BigInteger exp = input.modPow(priv.getPhi_n().divide((BigInteger)primes.elementAt(i)), priv.getModulus());
Vector al = lookup[i];
if (lookup[i].size() != ((BigInteger)primes.elementAt(i)).intValue())
{
if (debug)
{
System.out.println("Prime is " + primes.elementAt(i) + ", lookup table has size " + al.size());
}
throw new InvalidCipherTextException("Error in lookup Array for "
+ ((BigInteger)primes.elementAt(i)).intValue()
+ ": Size mismatch. Expected ArrayList with length "
+ ((BigInteger)primes.elementAt(i)).intValue() + " but found ArrayList of length "
+ lookup[i].size());
}
int lookedup = al.indexOf(exp);
if (lookedup == -1)
{
if (debug)
{
System.out.println("Actual prime is " + primes.elementAt(i));
System.out.println("Decrypted value is " + exp);
System.out.println("LookupList for " + primes.elementAt(i) + " with size " + lookup[i].size()
+ " is: ");
for (int j = 0; j < lookup[i].size(); j++)
{
System.out.println(lookup[i].elementAt(j));
}
}
throw new InvalidCipherTextException("Lookup failed");
}
plain.addElement(BigInteger.valueOf(lookedup));
}
BigInteger test = chineseRemainder(plain, primes);
// Should not be used as an oracle, so reencrypt output to see
// if it corresponds to input
// this breaks probabilisic encryption, so disable it. Anyway, we do
// use the first n primes for key generation, so it is pretty easy
// to guess them. But as stated in the paper, this is not a security
// breach. So we can just work with the correct sigma.
// if (debug) {
// System.out.println("Decryption is " + test);
// }
// if ((key.getG().modPow(test, key.getModulus())).equals(input)) {
// output = test.toByteArray();
// } else {
// if(debug){
// System.out.println("Engine seems to be used as an oracle,
// returning null");
// }
// output = null;
// }
output = test.toByteArray();
}
return output;
}
/**
* Encrypts a BigInteger aka Plaintext with the public key.
*
* @param plain
* The BigInteger to encrypt
* @return The byte[] representation of the encrypted BigInteger (i.e.
* crypted.toByteArray())
*/
public byte[] encrypt(BigInteger plain)
{
// Always return modulus size values 0-padded at the beginning
// 0-padding at the beginning is correctly parsed by BigInteger :)
byte[] output = key.getModulus().toByteArray();
Arrays.fill(output, (byte)0);
byte[] tmp = key.getG().modPow(plain, key.getModulus()).toByteArray();
System
.arraycopy(tmp, 0, output, output.length - tmp.length,
tmp.length);
if (debug)
{
System.out
.println("Encrypted value is: " + new BigInteger(output));
}
return output;
}
/**
* Adds the contents of two encrypted blocks mod sigma
*
* @param block1
* the first encrypted block
* @param block2
* the second encrypted block
* @return encrypt((block1 + block2) mod sigma)
* @throws InvalidCipherTextException
*/
public byte[] addCryptedBlocks(byte[] block1, byte[] block2)
throws InvalidCipherTextException
{
// check for correct blocksize
if (forEncryption)
{
if ((block1.length > getOutputBlockSize())
|| (block2.length > getOutputBlockSize()))
{
throw new InvalidCipherTextException(
"BlockLength too large for simple addition.\n");
}
}
else
{
if ((block1.length > getInputBlockSize())
|| (block2.length > getInputBlockSize()))
{
throw new InvalidCipherTextException(
"BlockLength too large for simple addition.\n");
}
}
// calculate resulting block
BigInteger m1Crypt = new BigInteger(1, block1);
BigInteger m2Crypt = new BigInteger(1, block2);
BigInteger m1m2Crypt = m1Crypt.multiply(m2Crypt);
m1m2Crypt = m1m2Crypt.mod(key.getModulus());
if (debug)
{
System.out.println("c(m1) as BigInteger:....... " + m1Crypt);
System.out.println("c(m2) as BigInteger:....... " + m2Crypt);
System.out.println("c(m1)*c(m2)%n = c(m1+m2)%n: " + m1m2Crypt);
}
byte[] output = key.getModulus().toByteArray();
Arrays.fill(output, (byte)0);
System.arraycopy(m1m2Crypt.toByteArray(), 0, output, output.length
- m1m2Crypt.toByteArray().length,
m1m2Crypt.toByteArray().length);
return output;
}
/**
* Convenience Method for data exchange with the cipher.
*
* Determines blocksize and splits data to blocksize.
*
* @param data the data to be processed
* @return the data after it went through the NaccacheSternEngine.
* @throws InvalidCipherTextException
*/
public byte[] processData(byte[] data) throws InvalidCipherTextException
{
if (debug)
{
System.out.println();
}
if (data.length > getInputBlockSize())
{
int inBlocksize = getInputBlockSize();
int outBlocksize = getOutputBlockSize();
if (debug)
{
System.out.println("Input blocksize is: " + inBlocksize + " bytes");
System.out.println("Output blocksize is: " + outBlocksize + " bytes");
System.out.println("Data has length:.... " + data.length + " bytes");
}
int datapos = 0;
int retpos = 0;
byte[] retval = new byte[(data.length / inBlocksize + 1) * outBlocksize];
while (datapos < data.length)
{
byte[] tmp;
if (datapos + inBlocksize < data.length)
{
tmp = processBlock(data, datapos, inBlocksize);
datapos += inBlocksize;
}
else
{
tmp = processBlock(data, datapos, data.length - datapos);
datapos += data.length - datapos;
}
if (debug)
{
System.out.println("new datapos is " + datapos);
}
if (tmp != null)
{
System.arraycopy(tmp, 0, retval, retpos, tmp.length);
retpos += tmp.length;
}
else
{
if (debug)
{
System.out.println("cipher returned null");
}
throw new InvalidCipherTextException("cipher returned null");
}
}
byte[] ret = new byte[retpos];
System.arraycopy(retval, 0, ret, 0, retpos);
if (debug)
{
System.out.println("returning " + ret.length + " bytes");
}
return ret;
}
else
{
if (debug)
{
System.out.println("data size is less then input block size, processing directly");
}
return processBlock(data, 0, data.length);
}
}
/**
* Computes the integer x that is expressed through the given primes and the
* congruences with the chinese remainder theorem (CRT).
*
* @param congruences
* the congruences c_i
* @param primes
* the primes p_i
* @return an integer x for that x % p_i == c_i
*/
private static BigInteger chineseRemainder(Vector congruences, Vector primes)
{
BigInteger retval = ZERO;
BigInteger all = ONE;
for (int i = 0; i < primes.size(); i++)
{
all = all.multiply((BigInteger)primes.elementAt(i));
}
for (int i = 0; i < primes.size(); i++)
{
BigInteger a = (BigInteger)primes.elementAt(i);
BigInteger b = all.divide(a);
BigInteger b_ = b.modInverse(a);
BigInteger tmp = b.multiply(b_);
tmp = tmp.multiply((BigInteger)congruences.elementAt(i));
retval = retval.add(tmp);
}
return retval.mod(all);
}
}