org.spongycastle.crypto.signers.ECDSASigner Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of scprov-jdk15on Show documentation
Show all versions of scprov-jdk15on Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms.
This jar contains JCE provider for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.7.
package org.spongycastle.crypto.signers;
import java.math.BigInteger;
import java.security.SecureRandom;
import org.spongycastle.crypto.CipherParameters;
import org.spongycastle.crypto.DSA;
import org.spongycastle.crypto.params.ECKeyParameters;
import org.spongycastle.crypto.params.ECPrivateKeyParameters;
import org.spongycastle.crypto.params.ECPublicKeyParameters;
import org.spongycastle.crypto.params.ParametersWithRandom;
import org.spongycastle.math.ec.ECAlgorithms;
import org.spongycastle.math.ec.ECConstants;
import org.spongycastle.math.ec.ECPoint;
/**
* EC-DSA as described in X9.62
*/
public class ECDSASigner
implements ECConstants, DSA
{
ECKeyParameters key;
SecureRandom random;
public void init(
boolean forSigning,
CipherParameters param)
{
if (forSigning)
{
if (param instanceof ParametersWithRandom)
{
ParametersWithRandom rParam = (ParametersWithRandom)param;
this.random = rParam.getRandom();
this.key = (ECPrivateKeyParameters)rParam.getParameters();
}
else
{
this.random = new SecureRandom();
this.key = (ECPrivateKeyParameters)param;
}
}
else
{
this.key = (ECPublicKeyParameters)param;
}
}
// 5.3 pg 28
/**
* generate a signature for the given message using the key we were
* initialised with. For conventional DSA the message should be a SHA-1
* hash of the message of interest.
*
* @param message the message that will be verified later.
*/
public BigInteger[] generateSignature(
byte[] message)
{
BigInteger n = key.getParameters().getN();
BigInteger e = calculateE(n, message);
BigInteger r = null;
BigInteger s = null;
// 5.3.2
do // generate s
{
BigInteger k = null;
int nBitLength = n.bitLength();
do // generate r
{
do
{
k = new BigInteger(nBitLength, random);
}
while (k.equals(ZERO) || k.compareTo(n) >= 0);
ECPoint p = key.getParameters().getG().multiply(k);
// 5.3.3
BigInteger x = p.getX().toBigInteger();
r = x.mod(n);
}
while (r.equals(ZERO));
BigInteger d = ((ECPrivateKeyParameters)key).getD();
s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n);
}
while (s.equals(ZERO));
BigInteger[] res = new BigInteger[2];
res[0] = r;
res[1] = s;
return res;
}
// 5.4 pg 29
/**
* return true if the value r and s represent a DSA signature for
* the passed in message (for standard DSA the message should be
* a SHA-1 hash of the real message to be verified).
*/
public boolean verifySignature(
byte[] message,
BigInteger r,
BigInteger s)
{
BigInteger n = key.getParameters().getN();
BigInteger e = calculateE(n, message);
// r in the range [1,n-1]
if (r.compareTo(ONE) < 0 || r.compareTo(n) >= 0)
{
return false;
}
// s in the range [1,n-1]
if (s.compareTo(ONE) < 0 || s.compareTo(n) >= 0)
{
return false;
}
BigInteger c = s.modInverse(n);
BigInteger u1 = e.multiply(c).mod(n);
BigInteger u2 = r.multiply(c).mod(n);
ECPoint G = key.getParameters().getG();
ECPoint Q = ((ECPublicKeyParameters)key).getQ();
ECPoint point = ECAlgorithms.sumOfTwoMultiplies(G, u1, Q, u2);
BigInteger v = point.getX().toBigInteger().mod(n);
return v.equals(r);
}
private BigInteger calculateE(BigInteger n, byte[] message)
{
int log2n = n.bitLength();
int messageBitLength = message.length * 8;
if (log2n >= messageBitLength)
{
return new BigInteger(1, message);
}
else
{
BigInteger trunc = new BigInteger(1, message);
trunc = trunc.shiftRight(messageBitLength - log2n);
return trunc;
}
}
}