org.spongycastle.crypto.tls.TlsDHKeyExchange Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of scprov-jdk15on Show documentation
Show all versions of scprov-jdk15on Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms.
This jar contains JCE provider for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.7.
package org.spongycastle.crypto.tls;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.math.BigInteger;
import org.spongycastle.asn1.x509.KeyUsage;
import org.spongycastle.asn1.x509.SubjectPublicKeyInfo;
import org.spongycastle.asn1.x509.X509CertificateStructure;
import org.spongycastle.crypto.AsymmetricCipherKeyPair;
import org.spongycastle.crypto.params.AsymmetricKeyParameter;
import org.spongycastle.crypto.params.DHParameters;
import org.spongycastle.crypto.params.DHPrivateKeyParameters;
import org.spongycastle.crypto.params.DHPublicKeyParameters;
import org.spongycastle.crypto.util.PublicKeyFactory;
/**
* TLS 1.0 DH key exchange.
*/
class TlsDHKeyExchange implements TlsKeyExchange
{
protected static final BigInteger ONE = BigInteger.valueOf(1);
protected static final BigInteger TWO = BigInteger.valueOf(2);
protected TlsClientContext context;
protected int keyExchange;
protected TlsSigner tlsSigner;
protected AsymmetricKeyParameter serverPublicKey = null;
protected DHPublicKeyParameters dhAgreeServerPublicKey = null;
protected TlsAgreementCredentials agreementCredentials;
protected DHPrivateKeyParameters dhAgreeClientPrivateKey = null;
TlsDHKeyExchange(TlsClientContext context, int keyExchange)
{
switch (keyExchange)
{
case KeyExchangeAlgorithm.DH_RSA:
case KeyExchangeAlgorithm.DH_DSS:
this.tlsSigner = null;
break;
case KeyExchangeAlgorithm.DHE_RSA:
this.tlsSigner = new TlsRSASigner();
break;
case KeyExchangeAlgorithm.DHE_DSS:
this.tlsSigner = new TlsDSSSigner();
break;
default:
throw new IllegalArgumentException("unsupported key exchange algorithm");
}
this.context = context;
this.keyExchange = keyExchange;
}
public void skipServerCertificate() throws IOException
{
throw new TlsFatalAlert(AlertDescription.unexpected_message);
}
public void processServerCertificate(Certificate serverCertificate) throws IOException
{
X509CertificateStructure x509Cert = serverCertificate.certs[0];
SubjectPublicKeyInfo keyInfo = x509Cert.getSubjectPublicKeyInfo();
try
{
this.serverPublicKey = PublicKeyFactory.createKey(keyInfo);
}
catch (RuntimeException e)
{
throw new TlsFatalAlert(AlertDescription.unsupported_certificate);
}
if (tlsSigner == null)
{
try
{
this.dhAgreeServerPublicKey = validateDHPublicKey((DHPublicKeyParameters)this.serverPublicKey);
}
catch (ClassCastException e)
{
throw new TlsFatalAlert(AlertDescription.certificate_unknown);
}
TlsUtils.validateKeyUsage(x509Cert, KeyUsage.keyAgreement);
}
else
{
if (!tlsSigner.isValidPublicKey(this.serverPublicKey))
{
throw new TlsFatalAlert(AlertDescription.certificate_unknown);
}
TlsUtils.validateKeyUsage(x509Cert, KeyUsage.digitalSignature);
}
// TODO
/*
* Perform various checks per RFC2246 7.4.2: "Unless otherwise specified, the
* signing algorithm for the certificate must be the same as the algorithm for the
* certificate key."
*/
}
public void skipServerKeyExchange() throws IOException
{
// OK
}
public void processServerKeyExchange(InputStream is)
throws IOException
{
throw new TlsFatalAlert(AlertDescription.unexpected_message);
}
public void validateCertificateRequest(CertificateRequest certificateRequest)
throws IOException
{
short[] types = certificateRequest.getCertificateTypes();
for (int i = 0; i < types.length; ++i)
{
switch (types[i])
{
case ClientCertificateType.rsa_sign:
case ClientCertificateType.dss_sign:
case ClientCertificateType.rsa_fixed_dh:
case ClientCertificateType.dss_fixed_dh:
case ClientCertificateType.ecdsa_sign:
break;
default:
throw new TlsFatalAlert(AlertDescription.illegal_parameter);
}
}
}
public void skipClientCredentials() throws IOException
{
this.agreementCredentials = null;
}
public void processClientCredentials(TlsCredentials clientCredentials) throws IOException
{
if (clientCredentials instanceof TlsAgreementCredentials)
{
// TODO Validate client cert has matching parameters (see 'areCompatibleParameters')?
this.agreementCredentials = (TlsAgreementCredentials)clientCredentials;
}
else if (clientCredentials instanceof TlsSignerCredentials)
{
// OK
}
else
{
throw new TlsFatalAlert(AlertDescription.internal_error);
}
}
public void generateClientKeyExchange(OutputStream os) throws IOException
{
/*
* RFC 2246 7.4.7.2 If the client certificate already contains a suitable
* Diffie-Hellman key, then Yc is implicit and does not need to be sent again. In
* this case, the Client Key Exchange message will be sent, but will be empty.
*/
if (agreementCredentials == null)
{
generateEphemeralClientKeyExchange(dhAgreeServerPublicKey.getParameters(), os);
}
}
public byte[] generatePremasterSecret() throws IOException
{
if (agreementCredentials != null)
{
return agreementCredentials.generateAgreement(dhAgreeServerPublicKey);
}
return calculateDHBasicAgreement(dhAgreeServerPublicKey, dhAgreeClientPrivateKey);
}
protected boolean areCompatibleParameters(DHParameters a, DHParameters b)
{
return a.getP().equals(b.getP()) && a.getG().equals(b.getG());
}
protected byte[] calculateDHBasicAgreement(DHPublicKeyParameters publicKey,
DHPrivateKeyParameters privateKey)
{
return TlsDHUtils.calculateDHBasicAgreement(publicKey, privateKey);
}
protected AsymmetricCipherKeyPair generateDHKeyPair(DHParameters dhParams)
{
return TlsDHUtils.generateDHKeyPair(context.getSecureRandom(), dhParams);
}
protected void generateEphemeralClientKeyExchange(DHParameters dhParams, OutputStream os)
throws IOException
{
this.dhAgreeClientPrivateKey = TlsDHUtils.generateEphemeralClientKeyExchange(context.getSecureRandom(), dhParams, os);
}
protected DHPublicKeyParameters validateDHPublicKey(DHPublicKeyParameters key)
throws IOException
{
return TlsDHUtils.validateDHPublicKey(key);
}
}