org.spongycastle.math.ec.WTauNafMultiplier Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of scprov-jdk15on Show documentation
Show all versions of scprov-jdk15on Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms.
This jar contains JCE provider for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.7.
package org.spongycastle.math.ec;
import java.math.BigInteger;
/**
* Class implementing the WTNAF (Window
* τ
-adic Non-Adjacent Form) algorithm.
*/
class WTauNafMultiplier implements ECMultiplier
{
/**
* Multiplies a {@link org.spongycastle.math.ec.ECPoint.F2m ECPoint.F2m}
* by k
using the reduced τ
-adic NAF (RTNAF)
* method.
* @param p The ECPoint.F2m to multiply.
* @param k The integer by which to multiply k
.
* @return p
multiplied by k
.
*/
public ECPoint multiply(ECPoint point, BigInteger k, PreCompInfo preCompInfo)
{
if (!(point instanceof ECPoint.F2m))
{
throw new IllegalArgumentException("Only ECPoint.F2m can be " +
"used in WTauNafMultiplier");
}
ECPoint.F2m p = (ECPoint.F2m)point;
ECCurve.F2m curve = (ECCurve.F2m) p.getCurve();
int m = curve.getM();
byte a = curve.getA().toBigInteger().byteValue();
byte mu = curve.getMu();
BigInteger[] s = curve.getSi();
ZTauElement rho = Tnaf.partModReduction(k, m, a, s, mu, (byte)10);
return multiplyWTnaf(p, rho, preCompInfo, a, mu);
}
/**
* Multiplies a {@link org.spongycastle.math.ec.ECPoint.F2m ECPoint.F2m}
* by an element λ
of Z[τ]
using
* the τ
-adic NAF (TNAF) method.
* @param p The ECPoint.F2m to multiply.
* @param lambda The element λ
of
* Z[τ]
of which to compute the
* [τ]
-adic NAF.
* @return p
multiplied by λ
.
*/
private ECPoint.F2m multiplyWTnaf(ECPoint.F2m p, ZTauElement lambda,
PreCompInfo preCompInfo, byte a, byte mu)
{
ZTauElement[] alpha;
if (a == 0)
{
alpha = Tnaf.alpha0;
}
else
{
// a == 1
alpha = Tnaf.alpha1;
}
BigInteger tw = Tnaf.getTw(mu, Tnaf.WIDTH);
byte[]u = Tnaf.tauAdicWNaf(mu, lambda, Tnaf.WIDTH,
BigInteger.valueOf(Tnaf.POW_2_WIDTH), tw, alpha);
return multiplyFromWTnaf(p, u, preCompInfo);
}
/**
* Multiplies a {@link org.spongycastle.math.ec.ECPoint.F2m ECPoint.F2m}
* by an element λ
of Z[τ]
* using the window τ
-adic NAF (TNAF) method, given the
* WTNAF of λ
.
* @param p The ECPoint.F2m to multiply.
* @param u The the WTNAF of λ
..
* @return λ * p
*/
private static ECPoint.F2m multiplyFromWTnaf(ECPoint.F2m p, byte[] u,
PreCompInfo preCompInfo)
{
ECCurve.F2m curve = (ECCurve.F2m)p.getCurve();
byte a = curve.getA().toBigInteger().byteValue();
ECPoint.F2m[] pu;
if ((preCompInfo == null) || !(preCompInfo instanceof WTauNafPreCompInfo))
{
pu = Tnaf.getPreComp(p, a);
p.setPreCompInfo(new WTauNafPreCompInfo(pu));
}
else
{
pu = ((WTauNafPreCompInfo)preCompInfo).getPreComp();
}
// q = infinity
ECPoint.F2m q = (ECPoint.F2m) p.getCurve().getInfinity();
for (int i = u.length - 1; i >= 0; i--)
{
q = Tnaf.tau(q);
if (u[i] != 0)
{
if (u[i] > 0)
{
q = q.addSimple(pu[u[i]]);
}
else
{
// u[i] < 0
q = q.subtractSimple(pu[-u[i]]);
}
}
}
return q;
}
}