All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.netflix.servo.stats.StatsBuffer Maven / Gradle / Ivy

There is a newer version: 0.13.2
Show newest version
/*
 * Copyright 2014 Netflix, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.netflix.servo.stats;

import com.netflix.servo.util.Preconditions;

import java.util.Arrays;
import java.util.concurrent.atomic.AtomicBoolean;

/**
 * A simple circular buffer that records values, and computes useful stats.
 * This implementation is not thread safe.
 */
public class StatsBuffer {
  private int pos;
  private int curSize;
  private double mean;
  private double variance;
  private double stddev;
  private long min;
  private long max;
  private long total;

  private final double[] percentiles;
  private final double[] percentileValues;
  private final int size;
  private final long[] values;
  private final AtomicBoolean statsComputed = new AtomicBoolean(false);

  /**
   * Create a circular buffer that will be used to record values and compute useful stats.
   *
   * @param size        The capacity of the buffer
   * @param percentiles Array of percentiles to compute. For example { 95.0, 99.0 }.
   *                    If no percentileValues are required pass a 0-sized array.
   */
  public StatsBuffer(int size, double[] percentiles) {
    Preconditions.checkArgument(size > 0, "Size of the buffer must be greater than 0");
    Preconditions.checkArgument(percentiles != null,
        "Percents array must be non-null. Pass a 0-sized array "
            + "if you don't want any percentileValues to be computed.");
    Preconditions.checkArgument(validPercentiles(percentiles),
        "All percentiles should be in the interval (0.0, 100.0]");
    values = new long[size];
    this.size = size;
    this.percentiles = Arrays.copyOf(percentiles, percentiles.length);
    this.percentileValues = new double[percentiles.length];

    reset();
  }

  private static boolean validPercentiles(double[] percentiles) {
    for (double percentile : percentiles) {
      if (percentile <= 0.0 || percentile > 100.0) {
        return false;
      }
    }
    return true;
  }

  /**
   * Reset our local state: All values are set to 0.
   */
  public void reset() {
    statsComputed.set(false);
    pos = 0;
    curSize = 0;
    total = 0L;
    mean = 0.0;
    variance = 0.0;
    stddev = 0.0;
    min = 0L;
    max = 0L;
    for (int i = 0; i < percentileValues.length; ++i) {
      percentileValues[i] = 0.0;
    }
  }

  /**
   * Record a new value for this buffer.
   */
  public void record(long n) {
    values[Integer.remainderUnsigned(pos++, size)] = n;
    if (curSize < size) {
      ++curSize;
    }
  }

  /**
   * Compute stats for the current set of values.
   */
  public void computeStats() {
    if (statsComputed.getAndSet(true)) {
      return;
    }

    if (curSize == 0) {
      return;
    }

    Arrays.sort(values, 0, curSize); // to compute percentileValues
    min = values[0];
    max = values[curSize - 1];

    total = 0L;
    double sumSquares = 0.0;
    for (int i = 0; i < curSize; ++i) {
      total += values[i];
      sumSquares += values[i] * values[i];
    }
    mean = (double) total / curSize;
    if (curSize == 1) {
      variance = 0d;
    } else {
      variance = (sumSquares - ((double) total * total / curSize)) / (curSize - 1);
    }
    stddev = Math.sqrt(variance);

    computePercentiles(curSize);
  }

  private void computePercentiles(int curSize) {
    for (int i = 0; i < percentiles.length; ++i) {
      percentileValues[i] = calcPercentile(curSize, percentiles[i]);
    }
  }

  private double calcPercentile(int curSize, double percent) {
    if (curSize == 0) {
      return 0.0;
    }
    if (curSize == 1) {
      return values[0];
    }

        /*
         * We use the definition from http://cnx.org/content/m10805/latest
         * modified for 0-indexed arrays.
         */
    final double rank = percent * curSize / 100.0; // SUPPRESS CHECKSTYLE MagicNumber
    final int ir = (int) Math.floor(rank);
    final int irNext = ir + 1;
    final double fr = rank - ir;
    if (irNext >= curSize) {
      return values[curSize - 1];
    } else if (fr == 0.0) {
      return values[ir];
    } else {
      // Interpolate between the two bounding values
      final double lower = values[ir];
      final double upper = values[irNext];
      return fr * (upper - lower) + lower;
    }
  }

  /**
   * Get the number of entries recorded up to the size of the buffer.
   */
  public int getCount() {
    return curSize;
  }

  /**
   * Get the average of the values recorded.
   *
   * @return The average of the values recorded, or 0.0 if no values were recorded.
   */
  public double getMean() {
    return mean;
  }

  /**
   * Get the variance for the population of the recorded values present in our buffer.
   *
   * @return The variance.p of the values recorded, or 0.0 if no values were recorded.
   */
  public double getVariance() {
    return variance;
  }

  /**
   * Get the standard deviation for the population of the recorded values present in our buffer.
   *
   * @return The stddev.p of the values recorded, or 0.0 if no values were recorded.
   */
  public double getStdDev() {
    return stddev;
  }

  /**
   * Get the minimum of the values currently in our buffer.
   *
   * @return The min of the values recorded, or 0.0 if no values were recorded.
   */
  public long getMin() {
    return min;
  }

  /**
   * Get the max of the values currently in our buffer.
   *
   * @return The max of the values recorded, or 0.0 if no values were recorded.
   */
  public long getMax() {
    return max;
  }

  /**
   * Get the total sum of the values recorded.
   *
   * @return The sum of the values recorded, or 0.0 if no values were recorded.
   */
  public long getTotalTime() {
    return total;
  }

  /**
   * Get the computed percentileValues. See {@link StatsConfig} for how to request different
   * percentileValues. Note that for efficiency reasons we return the actual array of
   * computed values.
   * Users must NOT modify this array.
   *
   * @return An array of computed percentileValues.
   */
  public double[] getPercentileValues() {
    return Arrays.copyOf(percentileValues, percentileValues.length);
  }

  /**
   * Return the percentiles we will compute: For example: 95.0, 99.0.
   */
  public double[] getPercentiles() {
    return Arrays.copyOf(percentiles, percentiles.length);
  }

  /**
   * Return the value for the percentile given an index.
   * @param index If percentiles are [ 95.0, 99.0 ] index must be 0 or 1 to get the 95th
   *              or 99th percentile respectively.
   *
   * @return The value for the percentile requested.
   */
  public double getPercentileValueForIdx(int index) {
    return percentileValues[index];
  }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy