com.simiacryptus.mindseye.layers.java.SoftmaxLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.*;
import java.util.stream.DoubleStream;
import java.util.stream.IntStream;
/**
* The classic "softmax" key. All outputs will sum to 1 and be proportional to the log of the input.
*/
@SuppressWarnings("serial")
public class SoftmaxLayer extends LayerBase {
@SuppressWarnings("unused")
private static final Logger log = LoggerFactory.getLogger(SoftmaxLayer.class);
/**
* The Max input.
*/
double maxInput = 50;
/**
* Instantiates a new Softmax activation key.
*/
public SoftmaxLayer() {
}
/**
* Instantiates a new Softmax activation key.
*
* @param id the id
*/
protected SoftmaxLayer(@Nonnull final JsonObject id) {
super(id);
}
/**
* From json softmax activation key.
*
* @param json the json
* @param rs the rs
* @return the softmax activation key
*/
public static SoftmaxLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new SoftmaxLayer(json);
}
@Nonnull
@Override
public Result eval(@Nonnull final Result... inObj) {
final int itemCnt = inObj[0].getData().length();
@Nonnull final double[] sumA = new double[itemCnt];
Arrays.stream(inObj).forEach(nnResult -> nnResult.addRef());
@Nonnull final Tensor expA[] = new Tensor[itemCnt];
final Tensor[] outputA = IntStream.range(0, itemCnt).mapToObj(dataIndex -> {
@Nullable final Tensor input = inObj[0].getData().get(dataIndex);
assert 1 < input.length() : "input.length() = " + input.length();
@Nullable final Tensor exp;
final DoubleSummaryStatistics summaryStatistics = DoubleStream.of(input.getData()).filter(x -> Double.isFinite(x)).summaryStatistics();
final double max = summaryStatistics.getMax();
//final double min = summaryStatistics.getMin();
exp = input.map(x -> {
double xx = Math.exp(x - max);
return Double.isFinite(xx) ? xx : 0;
});
input.freeRef();
assert Arrays.stream(exp.getData()).allMatch(Double::isFinite);
assert Arrays.stream(exp.getData()).allMatch(v -> v >= 0);
//assert exp.sum() > 0;
final double sum = 0 < exp.sum() ? exp.sum() : 1;
assert Double.isFinite(sum);
expA[dataIndex] = exp;
sumA[dataIndex] = sum;
@Nullable Tensor result = exp.map(x -> x / sum);
return result;
}).toArray(i -> new Tensor[i]);
assert Arrays.stream(outputA).flatMapToDouble(x -> Arrays.stream(x.getData())).allMatch(v -> Double.isFinite(v));
return new Result(TensorArray.wrap(outputA), (@Nonnull final DeltaSet buffer, @Nonnull final TensorList data) -> {
if (inObj[0].isAlive()) {
final Tensor[] passbackA = IntStream.range(0, itemCnt).mapToObj(dataIndex -> {
Tensor deltaTensor = data.get(dataIndex);
@Nullable final double[] delta = deltaTensor.getData();
@Nullable final double[] expdata = expA[dataIndex].getData();
@Nonnull final Tensor passback = new Tensor(data.getDimensions());
final int dim = expdata.length;
double dot = 0;
for (int i = 0; i < expdata.length; i++) {
dot += delta[i] * expdata[i];
}
final double sum = sumA[dataIndex];
for (int i = 0; i < dim; i++) {
double value = 0;
value = (sum * delta[i] - dot) * expdata[i] / (sum * sum);
passback.set(i, value);
}
deltaTensor.freeRef();
return passback;
}).toArray(i -> new Tensor[i]);
assert Arrays.stream(passbackA).flatMapToDouble(x -> Arrays.stream(x.getData())).allMatch(v -> Double.isFinite(v));
@Nonnull TensorArray tensorArray = TensorArray.wrap(passbackA);
inObj[0].accumulate(buffer, tensorArray);
}
}) {
@Override
protected void _free() {
Arrays.stream(expA).forEach(ReferenceCounting::freeRef);
Arrays.stream(inObj).forEach(ReferenceCounting::freeRef);
}
@Override
public boolean isAlive() {
return inObj[0].isAlive();
}
};
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
return super.getJsonStub();
}
@Nonnull
@Override
public List state() {
return Arrays.asList();
}
}