com.simiacryptus.mindseye.layers.java.EntropyLossLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.lang.ref.ReferenceCounting;
import com.simiacryptus.mindseye.lang.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.UUID;
import java.util.stream.IntStream;
/**
* An entropy-based cost function. The output value is the expected number of nats needed to encode a category chosen
* using the first input as a distribution, but using the second input distribution for the encoding scheme.
*/
@SuppressWarnings("serial")
public class EntropyLossLayer extends LayerBase {
@SuppressWarnings("unused")
private static final Logger log = LoggerFactory.getLogger(EntropyLossLayer.class);
/**
* Instantiates a new Entropy loss key.
*/
public EntropyLossLayer() {
}
/**
* Instantiates a new Entropy loss key.
*
* @param id the id
*/
protected EntropyLossLayer(@Nonnull final JsonObject id) {
super(id);
}
/**
* From json entropy loss key.
*
* @param json the json
* @param rs the rs
* @return the entropy loss key
*/
public static EntropyLossLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new EntropyLossLayer(json);
}
@Nonnull
@Override
public Result eval(@Nonnull final Result... inObj) {
Arrays.stream(inObj).forEach(nnResult -> nnResult.addRef());
final double zero_tol = 1e-12;
TensorList indata = inObj[0].getData();
indata.addRef();
@Nonnull final Tensor gradient[] = new Tensor[indata.length()];
final double max_prob = 1.;
return new Result(TensorArray.wrap(IntStream.range(0, indata.length()).mapToObj(dataIndex -> {
@Nullable final Tensor l = indata.get(dataIndex);
@Nullable final Tensor r = inObj[1].getData().get(dataIndex);
if (l.length() != r.length()) {
throw new IllegalArgumentException(l.length() + " != " + r.length());
}
@Nonnull final Tensor gradientTensor = new Tensor(l.getDimensions());
@Nullable final double[] gradientData = gradientTensor.getData();
double total = 0;
@Nullable final double[] ld = l.getData();
@Nullable final double[] rd = r.getData();
for (int i = 0; i < l.length(); i++) {
final double lv = Math.max(Math.min(ld[i], max_prob), zero_tol);
final double rv = rd[i];
if (rv > 0) {
gradientData[i] = -rv / lv;
total += -rv * Math.log(lv);
} else {
gradientData[i] = 0;
}
}
l.freeRef();
r.freeRef();
assert total >= 0;
gradient[dataIndex] = gradientTensor;
return new Tensor(new double[]{total}, 1);
}).toArray(i -> new Tensor[i])), (@Nonnull final DeltaSet buffer, @Nonnull final TensorList delta) -> {
if (inObj[1].isAlive()) {
@Nonnull TensorArray tensorArray = TensorArray.wrap(IntStream.range(0, delta.length()).mapToObj(dataIndex -> {
Tensor deltaTensor = delta.get(dataIndex);
@Nullable final Tensor inputTensor = indata.get(dataIndex);
@Nonnull final Tensor passback = new Tensor(gradient[dataIndex].getDimensions());
for (int i = 0; i < passback.length(); i++) {
final double lv = Math.max(Math.min(inputTensor.get(i), max_prob), zero_tol);
passback.set(i, -deltaTensor.get(0) * Math.log(lv));
}
inputTensor.freeRef();
deltaTensor.freeRef();
return passback;
}).toArray(i -> new Tensor[i]));
inObj[1].accumulate(buffer, tensorArray);
}
if (inObj[0].isAlive()) {
@Nonnull TensorArray tensorArray = TensorArray.wrap(IntStream.range(0, delta.length()).mapToObj(dataIndex -> {
Tensor tensor = delta.get(dataIndex);
@Nonnull final Tensor passback = new Tensor(gradient[dataIndex].getDimensions());
for (int i = 0; i < passback.length(); i++) {
passback.set(i, tensor.get(0) * gradient[dataIndex].get(i));
}
tensor.freeRef();
return passback;
}).toArray(i -> new Tensor[i]));
inObj[0].accumulate(buffer, tensorArray);
}
delta.freeRef();
}) {
@Override
protected void _free() {
indata.freeRef();
Arrays.stream(gradient).forEach(ReferenceCounting::freeRef);
Arrays.stream(inObj).forEach(ReferenceCounting::freeRef);
}
@Override
public boolean isAlive() {
return inObj[0].isAlive() || inObj[0].isAlive();
}
};
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
return super.getJsonStub();
}
@Nonnull
@Override
public List state() {
return Arrays.asList();
}
}