All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.simiacryptus.mindseye.layers.java.NthPowerActivationLayer Maven / Gradle / Ivy

There is a newer version: 2.1.0
Show newest version
/*
 * Copyright (c) 2019 by Andrew Charneski.
 *
 * The author licenses this file to you under the
 * Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance
 * with the License.  You may obtain a copy
 * of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package com.simiacryptus.mindseye.layers.java;

import com.google.gson.JsonObject;
import com.simiacryptus.lang.ref.ReferenceCounting;
import com.simiacryptus.mindseye.lang.*;

import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.UUID;
import java.util.stream.IntStream;

/**
 * A multi-purpose Nth-power exponential function. Has reasonably efficient specialized (pure java) implementations of
 * many common signed rational values, such as +/-0.5, +/-1.0, 2.0, etc
 */
@SuppressWarnings("serial")
public final class NthPowerActivationLayer extends LayerBase {

  private double power = 1.0;

  /**
   * Instantiates a new Nth power activation key.
   */
  public NthPowerActivationLayer() {
  }

  /**
   * Instantiates a new Nth power activation key.
   *
   * @param id the id
   */
  protected NthPowerActivationLayer(@Nonnull final JsonObject id) {
    super(id);
    power = id.get("power").getAsDouble();
  }

  /**
   * From json nth power activation key.
   *
   * @param json the json
   * @param rs   the rs
   * @return the nth power activation key
   */
  public static NthPowerActivationLayer fromJson(@Nonnull final JsonObject json, Map rs) {
    return new NthPowerActivationLayer(json);
  }

  private static void nthPower(final double power, @Nonnull final Tensor input, final double[] inputData, final double[] gradientData, final double[] outputData) {
    for (int i = 0; i < input.length(); i++) {
      final double x = inputData[i];
      final boolean isZero = Math.abs(x) < 1e-20;
      double d = isZero ? 0.0 : power * Math.pow(x, power - 1);
      double f = isZero ? 0.0 : Math.pow(x, power);
      if (!Double.isFinite(d)) {
        d = 0.0;
      }
      if (!Double.isFinite(f)) {
        f = 0.0;
      }
      gradientData[i] = d;
      outputData[i] = f;
    }
  }

  private static void square(@Nonnull final Tensor input, final double[] inputData, final double[] gradientData, final double[] outputData) {
    for (int i = 0; i < input.length(); i++) {
      final double x = inputData[i];
      gradientData[i] = 2 * x;
      outputData[i] = x * x;
    }
  }

  private static void squareRoot(@Nonnull final Tensor input, final double[] inputData, final double[] gradientData, final double[] outputData) {
    for (int i = 0; i < input.length(); i++) {
      final double x = inputData[i];
      final boolean isZero = Math.abs(x) < 1e-20;
      final double power = 0.5;
      final double v = Math.pow(x, power);
      double d = isZero ? 0.0 : power / v;
      double f = isZero ? 0.0 : v;
      if (!Double.isFinite(d)) {
        d = 0.0;
      }
      if (!Double.isFinite(f)) {
        f = 0.0;
      }
      gradientData[i] = d;
      outputData[i] = f;
    }
  }

  private static void unity(@Nonnull final Tensor input, final double[] inputData, final double[] gradientData, final double[] outputData) {
    for (int i = 0; i < input.length(); i++) {
      gradientData[i] = 0;
      outputData[i] = 1;
    }
  }

  @Override
  public Result eval(@Nonnull final Result... inObj) {
    final int itemCnt = inObj[0].getData().length();
    assert 0 < itemCnt;
    Arrays.stream(inObj).forEach(nnResult -> nnResult.addRef());
    @Nonnull final Tensor inputGradientA[] = new Tensor[itemCnt];
    return new Result(TensorArray.wrap(IntStream.range(0, itemCnt).parallel().mapToObj(dataIndex -> {
      @Nullable final Tensor input = inObj[0].getData().get(dataIndex);
      @Nonnull final Tensor output = new Tensor(inObj[0].getData().getDimensions());
      @Nonnull final Tensor gradient = new Tensor(input.length());
      @Nullable final double[] inputData = input.getData();
      @Nullable final double[] gradientData = gradient.getData();
      @Nullable final double[] outputData = output.getData();
      inputGradientA[dataIndex] = gradient;
      if (power == 2) {
        NthPowerActivationLayer.square(input, inputData, gradientData, outputData);
      } else if (power == 0.5) {
        NthPowerActivationLayer.squareRoot(input, inputData, gradientData, outputData);
      } else if (power == 0.0) {
        NthPowerActivationLayer.unity(input, inputData, gradientData, outputData);
      } else {
        NthPowerActivationLayer.nthPower(power, input, inputData, gradientData, outputData);
      }
      input.freeRef();
      return output;
    }).toArray(i -> new Tensor[i])), (@Nonnull final DeltaSet buffer, @Nonnull final TensorList data) -> {
      if (inObj[0].isAlive()) {
        @Nonnull TensorArray tensorArray = TensorArray.wrap(IntStream.range(0, itemCnt).parallel().mapToObj(dataIndex -> {
          @Nonnull final Tensor passback = new Tensor(data.getDimensions());
          @Nullable final Tensor tensor = data.get(dataIndex);
          @Nullable double[] tensorData = tensor.getData();
          @Nullable final double[] gradientData = inputGradientA[dataIndex].getData();
          IntStream.range(0, passback.length()).forEach(i -> {
            final double v = gradientData[i];
            if (Double.isFinite(v)) {
              passback.set(i, tensorData[i] * v);
            }
          });
          tensor.freeRef();
          return passback;
        }).toArray(i -> new Tensor[i]));
        inObj[0].accumulate(buffer, tensorArray);
      }
      data.freeRef();
    }) {

      @Override
      protected void _free() {
        Arrays.stream(inObj).forEach(ReferenceCounting::freeRef);
        Arrays.stream(inputGradientA).forEach(ReferenceCounting::freeRef);
      }

      @Override
      public boolean isAlive() {
        return 0.0 != power && inObj[0].isAlive();
      }
    };
  }

  @Nonnull
  @Override
  public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
    @Nonnull final JsonObject json = super.getJsonStub();
    json.addProperty("power", power);
    return json;
  }

  /**
   * Gets power.
   *
   * @return the power
   */
  public double getPower() {
    return power;
  }

  /**
   * Sets power.
   *
   * @param power the power
   * @return the power
   */
  @Nonnull
  public NthPowerActivationLayer setPower(final double power) {
    this.power = power;
    return this;
  }

  @Override
  public List state() {
    return Arrays.asList();
  }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy