com.simiacryptus.mindseye.layers.java.ProductInputsLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.lang.ref.ReferenceCounting;
import com.simiacryptus.mindseye.lang.*;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.UUID;
import java.util.stream.IntStream;
/**
* Multiplies all inputs together, element-by-element.
*/
@SuppressWarnings("serial")
public class ProductInputsLayer extends LayerBase {
/**
* Instantiates a new Product inputs key.
*/
public ProductInputsLayer() {
}
/**
* Instantiates a new Product inputs key.
*
* @param id the id
*/
protected ProductInputsLayer(@Nonnull final JsonObject id) {
super(id);
}
/**
* From json product inputs key.
*
* @param json the json
* @param rs the rs
* @return the product inputs key
*/
public static ProductInputsLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new ProductInputsLayer(json);
}
@Nonnull
@Override
public Result evalAndFree(@Nonnull final Result... inObj) {
assert inObj.length > 1;
for (int i = 1; i < inObj.length; i++) {
final int dim0 = Tensor.length(inObj[0].getData().getDimensions());
final int dimI = Tensor.length(inObj[i].getData().getDimensions());
if (dim0 != 1 && dimI != 1 && dim0 != dimI) {
throw new IllegalArgumentException(Arrays.toString(inObj[0].getData().getDimensions()) + " != " + Arrays.toString(inObj[i].getData().getDimensions()));
}
}
return new Result(Arrays.stream(inObj).parallel().map(x -> x.getData().addRef()).reduce((l, r) -> {
TensorArray productArray = TensorArray.wrap(IntStream.range(0, Math.max(l.length(), r.length())).parallel()
.mapToObj(i1 -> {
@Nullable final Tensor left = l.get(1 == l.length() ? 0 : i1);
@Nullable final Tensor right = r.get(1 == r.length() ? 0 : i1);
Tensor product = Tensor.product(left, right);
left.freeRef();
right.freeRef();
return product;
}).toArray(i -> new Tensor[i]));
l.freeRef();
r.freeRef();
return productArray;
}).get(), (@Nonnull final DeltaSet buffer, @Nonnull final TensorList delta) -> {
for (@Nonnull final Result input : inObj) {
if (input.isAlive()) {
@Nonnull TensorList passback = Arrays.stream(inObj).parallel().map(x -> {
TensorList tensorList = x == input ? delta : x.getData();
tensorList.addRef();
return tensorList;
}).reduce((l, r) -> {
TensorArray productList = TensorArray.wrap(IntStream.range(0, Math.max(l.length(), r.length())).parallel()
.mapToObj(j -> {
@Nullable final Tensor left = l.get(1 == l.length() ? 0 : j);
@Nullable final Tensor right = r.get(1 == r.length() ? 0 : j);
Tensor product = Tensor.product(left, right);
left.freeRef();
right.freeRef();
return product;
}).toArray(j -> new Tensor[j]));
l.freeRef();
r.freeRef();
return productList;
}).get();
final TensorList inputData = input.getData();
if (1 == inputData.length() && 1 < passback.length()) {
TensorArray newValue = TensorArray.wrap(passback.stream().reduce((a, b) -> {
@Nullable Tensor c = a.addAndFree(b);
b.freeRef();
return c;
}).get());
passback.freeRef();
passback = newValue;
}
if (1 == Tensor.length(inputData.getDimensions()) && 1 < Tensor.length(passback.getDimensions())) {
TensorArray newValue = TensorArray.wrap(passback.stream()
.map((a) -> {
@Nonnull Tensor b = new Tensor(a.sum());
a.freeRef();
return b;
}).toArray(i -> new Tensor[i]));
passback.freeRef();
passback = newValue;
}
input.accumulate(buffer, passback);
}
}
delta.freeRef();
}) {
@Override
public boolean isAlive() {
for (@Nonnull final Result element : inObj)
if (element.isAlive()) {
return true;
}
return false;
}
@Override
protected void _free() {
Arrays.stream(inObj).map(Result::getData).forEach(ReferenceCounting::freeRef);
Arrays.stream(inObj).forEach(ReferenceCounting::freeRef);
}
};
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
return super.getJsonStub();
}
@Nonnull
@Override
public List state() {
return Arrays.asList();
}
}