com.simiacryptus.mindseye.layers.java.ReshapeLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.util.JsonUtil;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.UUID;
/**
* A dense matrix operator using vector-matrix multiplication. Represents a fully connected key of synapses, where all
* inputs are connected to all outputs via seperate coefficients.
*/
@SuppressWarnings("serial")
public class ReshapeLayer extends LayerBase {
private static final Logger log = LoggerFactory.getLogger(ReshapeLayer.class);
/**
* The Output dims.
*/
@Nullable
public final int[] outputDims;
/**
* Instantiates a new Img eval key.
*/
private ReshapeLayer() {
outputDims = null;
}
/**
* Instantiates a new Fully connected key.
*
* @param outputDims the output dims
*/
public ReshapeLayer(@Nonnull final int... outputDims) {
this.outputDims = Arrays.copyOf(outputDims, outputDims.length);
}
/**
* Instantiates a new Img eval key.
*
* @param json the json
* @param rs the rs
*/
protected ReshapeLayer(@Nonnull final JsonObject json, Map rs) {
super(json);
outputDims = JsonUtil.getIntArray(json.getAsJsonArray("outputDims"));
}
/**
* From json img eval key.
*
* @param json the json
* @param rs the rs
* @return the img eval key
*/
public static ReshapeLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new ReshapeLayer(json, rs);
}
@Nullable
@Override
public Result evalAndFree(@Nonnull final Result... inObj) {
assert 1 == inObj.length;
TensorList data = inObj[0].getData();
@Nonnull int[] inputDims = data.getDimensions();
ReshapedTensorList reshapedTensorList = new ReshapedTensorList(data, outputDims);
data.freeRef();
return new Result(reshapedTensorList, (DeltaSet buffer, TensorList delta) -> {
@Nonnull ReshapedTensorList tensorList = new ReshapedTensorList(delta, inputDims);
inObj[0].accumulate(buffer, tensorList);
delta.freeRef();
}) {
@Override
protected void _free() {
for (@Nonnull Result result : inObj) {
result.freeRef();
}
}
@Override
public boolean isAlive() {
return inObj[0].isAlive();
}
};
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
@Nonnull final JsonObject json = super.getJsonStub();
json.add("outputDims", JsonUtil.getJson(outputDims));
return json;
}
@Nonnull
@Override
public List state() {
return Arrays.asList();
}
}