com.simiacryptus.mindseye.layers.java.ScaleMetaLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.lang.ref.ReferenceCountingBase;
import com.simiacryptus.mindseye.lang.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.UUID;
import java.util.stream.IntStream;
/**
* The type Scale meta key.
*/
@SuppressWarnings("serial")
public class ScaleMetaLayer extends LayerBase {
@SuppressWarnings("unused")
private static final Logger log = LoggerFactory.getLogger(ScaleMetaLayer.class);
/**
* Instantiates a new Scale meta key.
*/
public ScaleMetaLayer() {
}
/**
* Instantiates a new Scale meta key.
*
* @param id the id
*/
protected ScaleMetaLayer(@Nonnull final JsonObject id) {
super(id);
}
/**
* From json scale meta key.
*
* @param json the json
* @param rs the rs
* @return the scale meta key
*/
public static ScaleMetaLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new ScaleMetaLayer(json);
}
@Nullable
@Override
public Result evalAndFree(@Nonnull final Result... inObj) {
final Result in0 = inObj[0];
final Result in1 = inObj[1];
final TensorList data0 = in0.getData();
final TensorList data1 = in1.getData();
final int itemCnt = data0.length();
final Tensor data10 = data1.get(0);
final Tensor[] tensors = IntStream.range(0, itemCnt).mapToObj(dataIndex -> data0.get(dataIndex).mapIndex((v, c) -> v * data10.get(c))).toArray(i -> new Tensor[i]);
data1.freeRef();
data0.freeRef();
Tensor tensor0 = tensors[0];
tensor0.addRef();
return new Result(TensorArray.wrap(tensors), (@Nonnull final DeltaSet buffer, @Nonnull final TensorList data) -> {
if (in0.isAlive()) {
@Nonnull TensorArray tensorArray = TensorArray.wrap(data.stream().map(t -> {
@Nullable Tensor tensor = t.mapIndex((v, c) -> {
return v * data10.get(c);
});
t.freeRef();
return tensor;
}).toArray(i -> new Tensor[i]));
in0.accumulate(buffer, tensorArray);
}
if (in1.isAlive()) {
@Nullable final Tensor passback = tensor0.mapIndex((v, c) -> {
return IntStream.range(0, itemCnt).mapToDouble(i -> data.get(i).get(c) * data.get(i).get(c)).sum();
});
tensor0.freeRef();
@Nonnull TensorArray tensorArray = TensorArray.wrap(IntStream.range(0, data.length())
.mapToObj(i -> i == 0 ? passback : passback.map(v -> 0)).toArray(i -> new Tensor[i]));
in1.accumulate(buffer, tensorArray);
}
data.freeRef();
}) {
@Override
protected void _free() {
data10.freeRef();
Arrays.stream(inObj).forEach(ReferenceCountingBase::freeRef);
}
@Override
public boolean isAlive() {
return in0.isAlive() || in1.isAlive();
}
};
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
return super.getJsonStub();
}
@Nonnull
@Override
public List state() {
return Arrays.asList();
}
}