com.simiacryptus.mindseye.layers.java.SimpleActivationLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Arrays;
import java.util.List;
import java.util.UUID;
import java.util.stream.IntStream;
/**
* A parent class for all stateless, univariate "activation" functions.
*
* @param the type parameter
*/
@SuppressWarnings("serial")
public abstract class SimpleActivationLayer> extends LayerBase {
@SuppressWarnings("unused")
private static final Logger log = LoggerFactory.getLogger(SigmoidActivationLayer.class);
/**
* Instantiates a new Simple activation key.
*/
public SimpleActivationLayer() {
super();
this.frozen = true;
}
/**
* Instantiates a new Simple activation key.
*
* @param id the id
*/
protected SimpleActivationLayer(@Nonnull final JsonObject id) {
super(id);
}
/**
* Eval.
*
* @param x the x
* @param results the results
*/
protected abstract void eval(final double x, double[] results);
@Nonnull
@Override
public Result eval(@Nonnull final Result... inObj) {
final TensorList indata0 = inObj[0].getData();
final int itemCnt = indata0.length();
assert 0 < itemCnt;
Arrays.stream(inObj).forEach(nnResult -> nnResult.addRef());
Arrays.stream(inObj).forEach(nnResult -> nnResult.getData().addRef());
@Nonnull final Tensor inputGradientA[] = new Tensor[itemCnt];
return new Result(TensorArray.wrap(IntStream.range(0, itemCnt).parallel().mapToObj(dataIndex -> {
@Nullable final Tensor input = indata0.get(dataIndex);
@Nonnull final Tensor output = new Tensor(indata0.getDimensions());
@Nonnull final Tensor inputGradient = new Tensor(input.length());
inputGradientA[dataIndex] = inputGradient;
@Nonnull final double[] results = new double[2];
for (int i = 0; i < input.length(); i++) {
eval(input.getData()[i], results);
inputGradient.set(i, results[1]);
output.set(i, results[0]);
}
input.freeRef();
return output;
}).toArray(i -> new Tensor[i])), (@Nonnull final DeltaSet buffer, @Nonnull final TensorList data) -> {
if (inObj[0].isAlive()) {
@Nonnull TensorArray tensorArray = TensorArray.wrap(IntStream.range(0, itemCnt).parallel().mapToObj(dataIndex -> {
@Nonnull final Tensor passback = new Tensor(data.getDimensions());
@Nullable final double[] gradientData = inputGradientA[dataIndex].getData();
@Nullable Tensor tensor = data.get(dataIndex);
IntStream.range(0, passback.length()).forEach(i -> {
final double v = gradientData[i];
if (Double.isFinite(v)) {
passback.set(i, tensor.get(i) * v);
}
});
tensor.freeRef();
return passback;
}).toArray(i -> new Tensor[i]));
inObj[0].accumulate(buffer, tensorArray);
}
data.freeRef();
}) {
@Override
protected void _free() {
Arrays.stream(inObj).forEach(nnResult -> nnResult.freeRef());
Arrays.stream(inObj).forEach(nnResult -> nnResult.getData().freeRef());
for (@Nonnull Tensor tensor : inputGradientA) {
tensor.freeRef();
}
}
@Override
public boolean isAlive() {
return inObj[0].isAlive();
}
};
}
@Nonnull
@Override
public List state() {
return Arrays.asList();
}
}