com.simiacryptus.mindseye.layers.java.SubBatchLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.lang.ref.ReferenceCounting;
import com.simiacryptus.lang.ref.ReferenceCountingBase;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.mindseye.layers.WrapperLayer;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.UUID;
import java.util.stream.IntStream;
@SuppressWarnings("serial")
public class SubBatchLayer extends WrapperLayer {
protected SubBatchLayer(@Nonnull final JsonObject json, Map rs) {
super(json, rs);
}
public SubBatchLayer(final Layer inner) {
super(inner);
}
public static SubBatchLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new SubBatchLayer(json, rs);
}
public static SubBatchLayer wrap(T layer) {
SubBatchLayer subBatchLayer = new SubBatchLayer(layer);
layer.freeRef();
return subBatchLayer;
}
@Override
public List getChildren() {
return super.getChildren();
}
@Nullable
@Override
public Result eval(final Result... inputs) {
Layer inner = getInner();
inner.addRef();
Arrays.stream(inputs).forEach(ReferenceCountingBase::addRef);
int batches = inputs[0].getData().length();
Tensor[][] passbackBuffer = IntStream.range(0, inputs.length)
.mapToObj(inputIndex -> new Tensor[inputs[inputIndex].getData().length()])
.toArray(x -> new Tensor[x][]);
Result[] batchResults = IntStream.range(0, batches).mapToObj(batchIndex -> {
return inner.evalAndFree(IntStream.range(0, inputs.length).mapToObj(inputIndex -> {
return new Result(
TensorArray.wrap(inputs[inputIndex].getData().get(batchIndex)),
(deltaBuffer, deltaSignal) -> {
passbackBuffer[inputIndex][batchIndex] = deltaSignal.get(0);
deltaSignal.freeRef();
});
}).toArray(x -> new Result[x]));
}).toArray(i -> new Result[i]);
TensorArray resultData = TensorArray.wrap(Arrays.stream(batchResults).map(x -> x.getData().get(0)).toArray(i -> new Tensor[i]));
Arrays.stream(batchResults).map(Result::getData).forEach(ReferenceCounting::freeRef);
return new Result(
resultData,
(DeltaSet deltaBuffer, TensorList deltaSignal) -> {
try {
IntStream.range(0, deltaSignal.length()).forEach(batchIndex -> {
TensorArray tensorArray = TensorArray.wrap(deltaSignal.get(batchIndex));
batchResults[batchIndex].getAccumulator().accept(deltaBuffer, tensorArray);
});
} finally {
deltaSignal.freeRef();
}
synchronized (passbackBuffer) {
IntStream.range(0, inputs.length).forEach(inputIndex -> {
TensorArray tensorArray = TensorArray.wrap(passbackBuffer[inputIndex]);
inputs[inputIndex].getAccumulator().accept(deltaBuffer, tensorArray);
});
}
}) {
@Override
protected void _free() {
Arrays.stream(inputs).forEach(ReferenceCounting::freeRef);
Arrays.stream(batchResults).forEach(ReferenceCounting::freeRef);
inner.freeRef();
super._free();
}
};
}
@Nullable
@Override
public Result evalAndFree(final Result... inputs) {
Layer inner = getInner();
int batches = inputs[0].getData().length();
Tensor[][] passbackBuffer = IntStream.range(0, inputs.length)
.mapToObj(inputIndex -> new Tensor[inputs[inputIndex].getData().length()])
.toArray(x -> new Tensor[x][]);
Result[] batchResults = IntStream.range(0, batches).mapToObj(batchIndex -> {
return inner.evalAndFree(IntStream.range(0, inputs.length).mapToObj(inputIndex -> {
return new Result(
TensorArray.wrap(inputs[inputIndex].getData().get(batchIndex)),
(deltaBuffer, deltaSignal) -> {
passbackBuffer[inputIndex][batchIndex] = deltaSignal.get(0);
});
}).toArray(x -> new Result[x]));
}).toArray(i -> new Result[i]);
Arrays.stream(inputs).map(Result::getData).forEach(ReferenceCounting::freeRef);
TensorArray resultData = TensorArray.wrap(Arrays.stream(batchResults).map(x -> x.getData().get(0)).toArray(i -> new Tensor[i]));
Arrays.stream(batchResults).map(Result::getData).forEach(ReferenceCounting::freeRef);
return new Result(
resultData,
(deltaBuffer, deltaSignal) -> {
synchronized (passbackBuffer) {
IntStream.range(0, deltaSignal.length()).forEach(batchIndex -> {
TensorArray tensorArray = TensorArray.wrap(deltaSignal.get(batchIndex));
batchResults[batchIndex].getAccumulator().accept(deltaBuffer, tensorArray);
tensorArray.freeRef();
});
IntStream.range(0, inputs.length).forEach(inputIndex -> {
TensorArray tensorArray = TensorArray.wrap(passbackBuffer[inputIndex]);
inputs[inputIndex].getAccumulator().accept(deltaBuffer, tensorArray);
tensorArray.freeRef();
});
}
}) {
@Override
protected void _free() {
Arrays.stream(inputs).forEach(ReferenceCounting::freeRef);
Arrays.stream(batchResults).forEach(ReferenceCounting::freeRef);
super._free();
}
};
}
}