com.simiacryptus.mindseye.layers.java.AvgReducerLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
The newest version!
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.ref.lang.RefUtil;
import com.simiacryptus.ref.wrappers.RefArrays;
import com.simiacryptus.ref.wrappers.RefIntStream;
import com.simiacryptus.ref.wrappers.RefList;
import org.jetbrains.annotations.NotNull;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Map;
import java.util.UUID;
import java.util.function.IntFunction;
/**
* The type Avg reducer layer.
*/
@SuppressWarnings("serial")
public class AvgReducerLayer extends LayerBase {
@SuppressWarnings("unused")
private static final Logger log = LoggerFactory.getLogger(SumReducerLayer.class);
/**
* Instantiates a new Avg reducer layer.
*/
public AvgReducerLayer() {
}
/**
* Instantiates a new Avg reducer layer.
*
* @param id the id
*/
protected AvgReducerLayer(@Nonnull final JsonObject id) {
super(id);
}
/**
* From json avg reducer layer.
*
* @param json the json
* @param rs the rs
* @return the avg reducer layer
*/
@Nonnull
@SuppressWarnings("unused")
public static AvgReducerLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new AvgReducerLayer(json);
}
@Nonnull
@Override
public Result eval(@Nonnull final Result... inObj) {
TensorList data0 = inObj[0].getData();
int length = data0.length();
data0.freeRef();
TensorArray data = fwd(RefUtil.addRef(inObj), length);
Accumulator accumulator = new Accumulator(RefUtil.addRef(inObj));
boolean alive = Result.anyAlive(inObj);
return new Result(data, accumulator, alive);
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
return super.getJsonStub();
}
@Nonnull
@Override
public RefList state() {
return RefArrays.asList();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
}
@Nonnull
public @Override
@SuppressWarnings("unused")
AvgReducerLayer addRef() {
return (AvgReducerLayer) super.addRef();
}
@NotNull
private TensorArray fwd(@Nonnull Result[] inObj, int length) {
TensorArray tensorArray = new TensorArray(RefIntStream.range(0, length).parallel()
.mapToDouble(dataIndex -> {
double sum = 0;
for (@Nonnull final Result element : inObj) {
TensorList data = element.getData();
Tensor tensor = data.get(dataIndex);
data.freeRef();
@Nullable final double[] input = tensor.getData();
for (final double element2 : input) {
sum += element2 / input.length;
}
tensor.freeRef();
}
return sum;
}).mapToObj(x -> new Tensor(new double[]{x}, new int[]{1}))
.toArray(Tensor[]::new));
RefUtil.freeRef(inObj);
return tensorArray;
}
private static class Accumulator extends Result.Accumulator {
private final Result[] inObj;
/**
* Instantiates a new Accumulator.
*
* @param inObj the in obj
*/
public Accumulator(Result... inObj) {
this.inObj = inObj;
}
@Override
public void accept(@Nullable DeltaSet buffer, @Nonnull TensorList delta) {
for (@Nonnull final Result result : inObj) {
if (result.isAlive()) {
TensorList inData = result.getData();
@Nonnull final TensorList tensorList = new TensorArray(RefIntStream.range(0, inData.length()).parallel()
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) dataIndex -> {
Tensor deltaTensor = delta.get(dataIndex);
final double deltaV = deltaTensor.get(0);
deltaTensor.freeRef();
@Nonnull final Tensor passback = new Tensor(inData.getDimensions());
final int dim = passback.length();
for (int i = 0; i < dim; i++) {
passback.set(i, deltaV / dim);
}
return passback;
}, delta.addRef(), inData))
.toArray(Tensor[]::new));
Result.Accumulator accumulator = result.getAccumulator();
try {
accumulator.accept(buffer.addRef(), tensorList);
} finally {
accumulator.freeRef();
}
}
}
delta.freeRef();
if (null != buffer)
buffer.freeRef();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
RefUtil.freeRef(inObj);
}
}
}